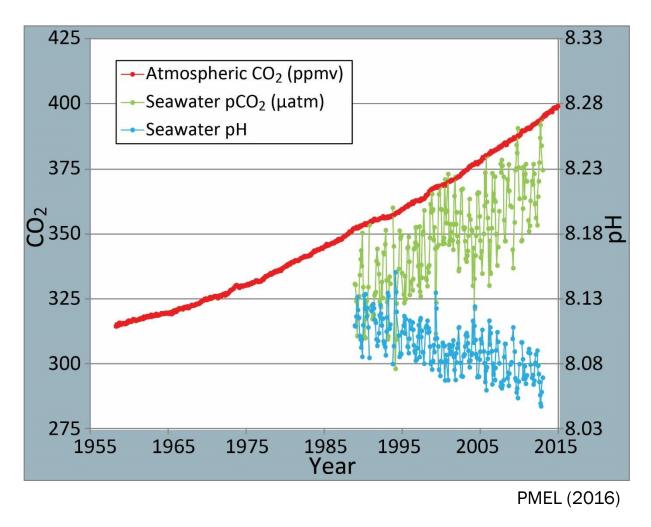
Ocean Acidification across bivalve lifehistory stages: Relevant outcomes for the OR shellfish industry

Cameron Allen, Iria Gimenez, Jessamyn Johnson, Steve Pacella Dr. George Waldbusser's Lab

Climate Change and Ocean Acidification: A Workshop for Oregon Educators Corvallis, June 29th 2016

The U.S. West Coast Shellfish Industry's Perception of and Response to Ocean Acidification


Understanding an ocean stakeholder

B. Mabardy, F.D.L. Conway, G.G. Waldbusser, C.S. Olsen

- Over 80% of Industry consider OA has consequences for people today, compared to 20% of US public
- Over half of industry experiencing OA, and a third not sure.
- Roughly 5/6 respondents believed either they could adapt (60%) or weren't sure
- 90% of Industry though University partnerships were useful and a high priority to adapt to OA

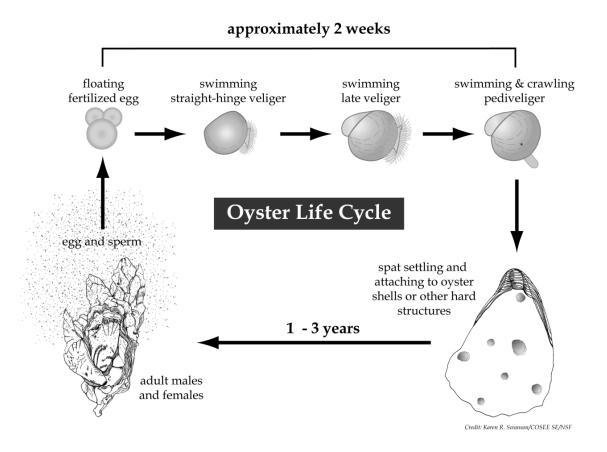
Ocean Acidification (OA) in a nutshell

- As CO2 in the atmosphere increases, roughly between 20%-30% is absorbed by the ocean.
- The increase of dissolved CO2 results in decreased pH and saturation state (Omega)
- Saturation state is a measure of how corrosive the water is for calcium carbonate (shells)

OA at local/regional spatial scales

Oregon is an OA hotspot

Natural processes like upwelling and photosynthesis/respiration exacerbate OA by further increasing dissolved CO_2 . OA happening at a faster rate than in open ocean


The carbonate chemistry in coastal OR is highly variable but a shifting baseline of dissolved CO_2 results in:

- Extreme negative events are more frequent, more intense and longer in duration
- Windows of "good" conditions become shorter and less frequent.

What does it mean for shellfish?

- ~80% of bivalves studied show negative responses to increasing dissolved CO₂
- Windows of vulnerability across and within life-stages

General Bivalve Life History and Sensitivity Bottlenecks

- Life cycle of bivalves is complex
- Differential sensitivity to OA among and within life-stages leads to Sensitivity Bottlenecks
- Various research projects designed to study and address different bottlenecks

More Resources:

- Ocean Acidification- Changing waters on the Oregon Coast (OSU) : <u>https://www.youtube.com/watch?v=7h08ok3hFSs</u>
- NOAA Pacific Marine Environment Laboratory (PMEL) Carbon Program : <u>http://www.pmel.noaa.gov/co2/story/Ocean+Acidification</u>

Contact us:

Cameron Allen: <u>allencam@oregonstate.edu</u> Iria Gimenez: <u>igimenez@coas.oregonstate.edu</u> Steve Pacella: <u>spacella@coas.oregonstate.edu</u> Jessamyn Johnson: <u>johnjes7@oregonstate.edu</u>

George Waldbusser: <u>waldbuss@coas.oregonstate.edu</u>