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 1 Introduction
Earth's  climate  system  can  be  separated  into  four  components:  the  atmosphere,  the  oceans,  the
cryosphere  (ice)  and  the  land surface  /  vegetation  (Fig.  1.1).  Physical  processes,  such  as  electro-
magnetic radiation, fluid motions, and precipitation, interact with biological processes, such as carbon
uptake by growing plants, and chemical transformations to form a complex and dynamical system.
Length scales involved range from planetary for the largest scale motions of the oceans and atmosphere
to microscopic scales of such important processes as cloud condensation or dissipation of turbulent
energy. Time scales range from hundreds of thousands of years for the cyclic variations of Earth’s orbit
around the sun to seconds a wave takes to break on the beach. Exchanges of energy, momentum and
matter,  such  as  water  and  carbon,  connect  the  components  of  the  climate  system  and  lead  to
interactions between them.

In this course, which is designed for upper level undergraduate and graduate students with background
in math and natural sciences (basic physics, chemistry, biology and geology), we will introduce Earth's
energy, water and carbon cycles. We will discuss the components of the climate system individually
before we take a look at interactions between them. Fundamental principles used in climate modeling
will be covered, UNIX and the programming language FORTRAN will be introduced, and we will run
our own simple computer models to illustrate those principles. We will download data from simulations
with comprehensive climate models and analyze them using the software FERRET (google “ferret
noaa”). These hands-on experiences might also be useful to understand the problems and challenges of
state-of-the-art climate models as well as to get a feeling for the different types of complexities in the
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Figure 1.1: Components of the climate system, their interactions and processes. From IPCC (2007).



climate model hierarchy. Learning a programming language may also be useful for other purposes in
your future professional life even if you don't become a climate modeler.

Trenberth,  K.  E.,  Fasullo,  J.  T.,  and  Kiel,  J.  (2009)  Earth's  global  energy budget,  Bulletin  of  the
American Meteorological Society, doi:10.1175/2008BAMS2634.1.
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Figure 1.2: Earth's energy budget. From Trenberth et al. (2009).



 2 Earth's Energy Budget
Figure 1.2 shows observational estimates for Earth's global energy budget. Earth is heated by absorbing
radiation from the sun and cooled by emission of thermal radiation back to space. We will use this
diagram to construct our first climate model below. Before we do this, a few more words on Earth's
radiation balance at the top-of-the-atmosphere. 

The spectrum of energy emitted from a black body of a certain temperature T can be calculated from
Planck's law of black body radiation. Figure 2.1 shows the spectra for the Sun TS=5500 K and Earth
TE=255  K.  The  incoming  solar  radiation  is  at  visible  wavelengths  whereas  the  outgoing  thermal
radiation is in the infrared part of the spectrum. The measured radiation is well approximated by a
Planck curve. Some absorption occurs in the atmosphere, mainly due to water vapor and ozone, but
most solar radiation penetrates to the surface.

 2.1 The Zero-Dimensional Energy Balance Model

The  simplest  model  of  the  Earth's  climate
system is  the zero-dimensional  energy balance
model (0D EBM). One-dimensional versions of
these  models  were  first  developed by Budyko
(1969)  and Sellers  (1969).  Earth  is  heated  by
absorption  of  solar  radiation  and  cooled  by
radiating thermal  (longwave)  radiation back to
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Figure  2.1:  Left:  Black  body  radiation  for  the  Sun  and  the  Earth.  From
http://www.ldeo.columbia.edu/~kushnir/MPA-ENVP/Climate/lectures/energy/.  Right:  Measured
downwelling solar radiation at the top-of-the-atmosphere (yellow) compared to black body (Planck)
curve (grey), and measured radiation at the surface (red).

Figure  2.2:  Heat  absorbed  and  emitted  by  the
Earth. From Goosse et al. (online textbook 2008).

http://www.ldeo.columbia.edu/~kushnir/MPA-ENVP/Climate/lectures/energy/


space (Figure  2.2). The incoming shortwave radiation from the sun averaged over Earth's surface is
S=S0/4=342 W/m2. The “solar constant” S0 = 1370 W/m2 is the radiative flux through a disk with the
radius of the Earth R=6300 km perpendicular to the suns rays. The factor 4 represents the average of
this flux over the Earth's spherical surface area which is 4pR2, whereas a disk of radius R has the area
pR2. 

Some part of this incoming radiation is reflected back to space by clouds or snow and ice cover on
the ground (Figure 2.3). This fraction is called planetary albedo and for Earth it is about a=0.3 (see Fig.
1.2). Assuming steady state, the shortwave radiation absorbed by the Earth's surface FSW=(1-a)S must
equal the longwave  radiation Fe=sTe

4 emitted back to space at the equilibrium temperature Te: 
(1-a)S = sTe

4. (2.1)

s=5.67·10-8 W/
(m2K4) is the Stefan
Boltzmann
constant.  Solving
for  Te gives  the
table  on  the  right.
Thus,  for  Earth
(a=0.3)  an
equilibrium
temperature  of
-18.2°C is  predicted, which is more than 30°C colder
than Earth's actual average surface temperature of about
15°C.  What  is  the  reason  for  this  discrepancy?  The
answer  is  that  we didn't  consider  the  atmosphere.  In

fact, Mars' temperature, who has no (or better a very thin) atmosphere, can be predicted reasonably
well with equation (2.1). Using a=0.16 and SMARS=SEARTH(1/1.52)2 in order to account for Mars' farther
distance from the sun (1.52 times Earth's distance) gives an equilibrium temperature of -54.2°C, close
to the observed value of -63°C. 

However,  gases  in  Earth's  atmosphere,  mainly  water  vapor  and  CO2,  act  like  the  glass  of  a
greenhouse such that they absorb much of the longwave radiation emitted from the surface. We can
consider  this  by  modifying our  EBM as  depicted  in  Fig.  2.4.  Now the  atmosphere  allows only  a
fraction t of the surface radiation to be transmitted to space. It will assume a temperature Ta and this
leads to emission of longwave radiation Fa=sTa

4 to both space and downward to the surface. Now we
have two equations for the energy balance of the surface

(1-a)S = Fe - Fa,

(2.2)

and that of the atmosphere

(1-t )Fe = 2Fa. 
(2.3)

Inserting eq. (2.3) into eq. (2.2) yields

1−aS=
1

2
F e≡g F e≡ F e

.

(2.4)

Note that eq. (2.4) is very similar to eq. (2.1) except for
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Figure  2.4: Radiative balance of a 0D
EBM including an atmosphere.
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the greenhouse factor  g. Choosing a value for Earth atmosphere's transmissivity of  t =0.23 and thus
g=0.62 a realistic surface temperature of  Te=15°C is obtained. The atmosphere temperature of  Ta=-
46°C, which is close to the observed temperature of the tropopause. Emission of surface longwave
radiation is Fe=390 W/m2, the total outgoing longwave flux at the top of the atmosphere t Fe+Fa=240
W/m2, numbers in reasonable agreement with observational estimates shown in Fig. 1.2, given that we
neglect  many processes such as surface sensible  and latent  heat fluxes or absorption of shortwave
radiation by the atmosphere. 

From eq. (2.3) it follows that 
Fe

F a

= 2
1−

and  hence  
T e

T a

= 2
1− 

1/4

.   Thus,  for  all

values  of  t the  atmospheric  temperature  will
always be lower than the surface temperature
and it will go to zero as ⇒1 .

Figure  2.5 shows how the transmission of
electromagnetic  radiation  through  the
atmosphere  is  influenced  by  absorption  at
different  wavelengths  from  various
atmospheric gases. Whereas the atmosphere is
very  transparent  for  shortwave  radiation  it  is
rather  opaque for longwave radiation,  similar
to the properties of the glass in a greenhouse.
(The  glass  in  a  greenhouse  also  has  other
effects  such  as  inhibiting  convection,  which
makes  the  analogy  imperfect  and  the
“greenhouse effect” perhaps even a misnomer.)
The  most  important  greenhouse  gas  is  water
vapor, but there is an important window around
10mm in the  water  vapor absorption through
which radiation from the surface can escape to
space.  However,  the  minor  greenhouse  gases
CO2,  oxygen,  ozone,  methane  and  nitrous
oxide absorb in this window, which makes them climatically important.
Further information on radiation at http://climate.gsfc.nasa.gov/static/cahalan/Radiation/.
Budyko M.I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus 21: 611-
619. 

Sellers W.D. (1969). A global climatic model based on the energy balance of the Earth-atmosphere
system. J. Appl. Met. 8: 392-400. 

The above papers are available at: http://wiki.nsdl.org/index.php/PALE:ClassicArticles/GlobalWarming

Another link: www.phys.uu.nl/~nvdelden/ClimateModels.pdf

Pierrehumbert  (2011)  Infrared  radiation  and  planetary  temperature.  Physics  Today  64  (1),  33-38.
http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_64/iss_1/33_1.shtml
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Figure  2.5:  Atmospheric  absorption  spectra  from a
line-by-line modeling  of  molecular  absorption using
modern  gas  concentrations  and  assuming  direct
vertical  transmission  only.  From
http://en.wikipedia.org/wiki/Absorption_band

http://www.phys.uu.nl/~nvdelden/ClimateModels.pdf
http://climate.gsfc.nasa.gov/static/cahalan/Radiation/


 2.2 The Ice-Albedo Feedback

The  longwave  radiation  increases  as  temperature  increases.  A small
perturbation  of  the  temperature  from  equilibrium,  let's  say  a  slight
warming, will result in cooling through increased longwave radiation to
space. Thus, the temperature dependence of the longwave radiation is a
negative,  or  self-stabilizing,  feedback mechanism.  Another  important
feedback mechanism in the climate system is the ice-albedo feedback.
As temperatures drop below the freezing point snow and ice cover on
the ground causes an increase of the surface albedo. Thus more sun
light is reflected back to space and temperatures drop even further. This
is a positive (self-amplifying) feedback. 

In  order  to  incorporate  this  feedback  into  our  simple  EBM  we
assume a ramp function (Fig. 2.6) for the planetary albedo:

a T ={ a1=0.3,TT U=280 K
a1mT U−T  ,T LTT U

a2=0.7,TT L=250 K } ,

(2.5)

with  m=a2−a1/T U−T L such  that  the  albedo  is
low for climates warmer than an upper temperature  TU

and high if the climate is colder than  TL, with a linear
transition in between. 

We also linearize the longwave flux by developing
F e=g T 4 into a Taylor series around T0=288 K:

Fe T−T 0 =g T 0
4
∂ F
∂T

∣T 0
T−T 0...

 F eT−T 0=ABT

, (2.6)

with A=−3g T 0
4=−726W /m2 and

B=4g T 0
3=3.36W /m2 K  . 

Equilibria of the system are now at:
1−aT S

FSW

=ABT
F LW

, (2.7)

and they can be found graphically from Fig.  2.7. Three
equilibria are possible. For our above set of parameters
these are T1=14.3°C, T2=-12°C and T3=-26°C. The time
dependent equation is:

C
∂T
∂ t

=F SW−F LW , (2.8)

with the heat capacity  C>0. Thus equilibria with a negative slope of  FSW-FLW  are stable. E.g. a small
positive perturbation to equilibrium T1 will lead to an increase in outgoing longwave radiation whereas
the shortwave stays constant. This leads to cooling and hence the perturbation will be damped. If the
system is at T2 a small positive perturbation leads to a larger increase in the shortwave radiation than
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Figure  2.7: Three solutions of the 0D EBM
with  ice  albedo  feedback.  The  green  line
shows  a  system  with  higher  S0 which
exhibits only one equilibrium.
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the longwave, thus amplifying the perturbation. Hence T2 is an unstable equilibrium. 

This can also be derived more formally by writing the total temperature T=T0+T'(t) as its value at the
equilibrium T0 plus a time dependent perturbation T'. Inserting into eq. (2.8) gives

C
∂T '
∂ t

=1−aT 0T ' S−A−B T 0T ' 
 . (2.9)

At   T0=  T1 we get

C
∂T '
∂ t

=1−a1S−A−B T 1T ' 

C
∂T '
∂ t

=−B T '
. (2.10)

The solution of the last partial differential equation is

T '=T ' t=0e
−B

C
t . (2.11)

The perturbation gets damped exponentially with the time scale C/B and thus the equilibrium is stable.

At   T0=  T2 we get

C
∂T '
∂ t

=−B−mS 
1.2

T ' , (2.12)

an  exponential  growth  of  the  perturbation.  Thus,  the
equilibrium is unstable to small perturbations.

At   T0=  T3 we get analogous to T0=  T1 a stable equilibrium. 

More generally, the stability of a time dependent system
∂T
∂ t

= f T  at the equilibrium T0 with
∂T 0

∂ t
=0= f T 0

can be evaluated by assuming a small perturbation T' and 

linearizing f 
∂T 0T ' 

∂ t
= f T 0

∂ f
∂T

∣T 0
T ' or

∂T '
∂ t

=T ' , where β=∂ f
∂T

(T 0) (Lyapunov exponent) 

with an exponential solution 
T '=T '  t=0e t

. The system is stable if 
0

, and unstable if
0

.
We conclude the 0D EBM with ice albedo feedback can have two stable equilibria. It is known from

physics (e.g. magnetism) that a system with two stable equilibria can exhibit hysteresis behavior. That
is, the state the system resides in at any given moment in time, does not only depend on the boundary
conditions of the system (parameters of the model), but also on its history. Rapid transitions between
the different equilibria can be triggered if a threshold of a slowly varying control parameter is passed. 

These properties can be illustrated with Figs. (2.7) and (2.8) by assuming the system resides in the
cold state and S is slowly increased. This leads to  T 2T L  and T 3T L . At  T 2=T 3=T L the
EBM switches to the warm state. Assume the solar constant is then decreased again. In order to return
to the cold state it is not sufficient to lower S to the threshold T 2=T 3=T L . The system will remain
in the warm state until it be comes unstable at T 2=T 1=T U , after which a rapid transition to the cold
state occurs. Thus, the temperature difference  T=T U−T L determines the width of the hysteresis
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Figure  2.8:  Hysteresis  behavior  of  the
0D EBM with ice albedo feedback.
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curve. If  T T crit at fixed  a=a2−a1 only one steady state is possible. Then

 m=−
 T

 a
B=

∂ F LW

∂T
.

Now that we know the system from our analytical analysis let's program our first numerical climate
model.  In  order  to  do  so  we  need  to  discretize  eq.  (2.8).  We  replace  the  differentials  by  finite
differences

C
 T
 t

=F SW−F LW

and  use  a  constant  time  step   t=t n1−t n .  The  temperature  change  during  one  time  step  is
 T=T n1−T n . Now we can calculate the new temperature at time index  n+1 from the previous

temperature at time index n according to

T n1=
F SW−F LW 

C
 tT n . (2.13)

This is called the “Euler forward” time differencing scheme. We will see later that this is not the only
scheme and for many purposes not the best one. But for now we will use it because of its simplicity.
Now we only need to know the heat capacity C in order to write a program and run it forward in time.
For the Earth's climate system C=COC A=OC Op H OAC Ap H A  we take the sum of the ocean's
CO and the atmosphere's CA heat capacity. The density of sea water is about O=1000kg /m3 , that of

air  A=1.2kg /m3 .  The  specific  heat  at  constant  pressure  of  sea  water  is  about
COp=4200 J /kg K  ,  that  of  air  C Ap=1000 J /kg K  ,  and  the  height  of  the  atmosphere  is
H A=8300m and for the depth of the ocean mixed layer we assume  H O=50 m . Thus the heat

capacity  of  the  ocean  CO=2.1⋅108 J /m2 K  is  about  20  times  that  of  the  atmosphere

C A=1⋅107 J /m2 K  and  the  total  heat  capacity  of  the  climate  system  is  approximately

C=2.2⋅108 J /m2 K  .  From
equation  2.11 we  see  that  Earth's
climate  system  damps
perturbations  with  a  characteristic
timescale  C /B=6.5⋅107 s≃2 a
of about two years.

 2.3 Climate Sensitivity

Definition: Radiative Forcing is the
instantaneous  change  of  the
radiative energy balance at the top
of the troposphere (after adjustment
of the stratosphere) due to a change
in something (e.g.  greenhouse gas
concentrations,  incoming  solar
radiation, surface albedo, aerosols)
with  everything  else  (e.g.
temperature, water vapor) fixed. ...
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Figure  2.9:  Evolution  of  global  mean  near  surface  air
temperature, expressed as a difference to a control run, due to an
exponential  (1%/yr)  increase  of  atmospheric  CO

2
.  From

Tomassini et al. (2013). The horizontal axis is an arbitrary model
year and does not correspond to a real calendar year.



Current  state-of-the-science climate models  show a  range of  response to  a  given forcing.  Fig.  2.9
illustrates this for an idealized numerical experiment in which CO2 is increased by 1% per year from
280 ppm at model year 1850 to 1120 ppm at model year 1990. All 14 models respond with warming
but  some models  warm more  than  others  such that  at  the  end  of  the  experiment  the  temperature
increase varies from ~3 K to ~5 K. The global surface air temperature change due to a given forcing is
referred to as the climate sensitivity; in this case, since climate is still changing, the transient climate
sensitivity due to a quadrupling of CO2. 

More commonly climate sensitivity is referred to as the global mean surface air temperature increase
for a doubling of atmospheric CO2: DT2xC. Its value is highly uncertain, which is an important reason for
the  uncertainty  in  transient  climate  sensitivity  illustrated  by  the  range in  Fig.  2.9.  Narrowing this
uncertainty remains a major challenge in current climate research. The radiative forcing for a change of
atmospheric CO2 is relatively well known (to within 10%) and depends on the logarithm of the CO2

concentration  C ΔQ=Q0 ln (C /C0) ,  where  C0 is  the  reference  CO2 concentration  (e.g.  the
preindustrial value of 280 ppmv) and Q0=5.35 W/m2. The logarithmic dependency is due to the near
saturation of the main CO2 absorption band (see Fig. 2.5). Thus the radiative forcing for a doubling of
CO2 is  DQ2xC=3.7 W/m2. An exponential increase in CO2 will therefore lead to a linear increase in
radiative forcing, in case of Fig.  2.9 the forcing increases from zero to 7.4 W/m2. The global mean
temperature response of the models is also approximately linear.

A more general definition of equilibrium climate sensitivity is the change in global mean surface air
temperature DT for an arbitrary radiative forcing DQ after the climate system has reached a new steady
state:

=
 T
Q

. (2.14)

DQ can be either a change in shortwave or
longwave  fluxes.  For  our  EBM  in
equilibrium (eq.  2.7) assuming a constant
albedo we have 

(1−a)S=A+BT 0
and

(1−a)S+ΔQ=A+B(T 0+ΔT ) .

Thus the climate sensitivity of our EBM
is simply

 α= 1
B

, (2.15)

which  gives  =0.3 K Wm−2−1 for
B=3.36 Wm−2 K−1 ,  which corresponds

to a warming of DT2xC  = 1 K for a doubling
of  CO2.  This is  the  climate  sensitivity  in
the absence of feedbacks.

GCMs (and most likely also the real climate system) have a larger climate sensitivity of about 0.6-1.1
K(Wm-2)-1 (IPCC, 2001). What is the reason for this discrepancy? Above, at eq. (2.6), when linearizing
the longwave radiation we have been somewhat cursory and used the surface temperature T0=Te=288 K
for the state to linearize around. However, most of the outgoing longwave radiation is emitted from the
cold upper atmosphere. From eq. (2.3) it can be calculated that only 38% of the longwave radiation
emitted  to  space  comes  from the  surface.  Thus  it  seems  more  appropriate  to  use  the  tropopause
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Figure  2.10: Regression of outgoing longwave radiation
at  the  top-of-the-atmosphere  (from  ERBE  satellite
observations) versus surface air temperature (from NCEP
re-analysis). All data have been averaged on 10 degree
latitude bands.



temperature Ta = 227 K as the state to linearize eq. (2.6) around. If this is done we get A = -246 W/m2

and B = 1.67 W/(m2K). These values for A and B are almost identical to the values one obtains by a
regression of observed (by satellite measurements) longwave fluxes against surface air temperatures
(Fig. 2.10). Note that the latter determination of the parameters implicitly includes feedbacks such as
the water vapor feedback. Using this value for B to recalculate the climate sensitivity we get a more
reasonable value of =0.6 K Wm−2−1 or DT2xC=2.3 K, which is within the 66% probability range
of 2-4.5 K reported by the IPCC (2007). Most complex models fall within this range, but larger values
cannot be excluded at present. Changes in albedo would increase the climate sensitivity. Using the 0D
EBM this contribution is difficult to estimate, because it neglects meridional differences. In the real
world we would expect albedo changes due to changes in snow or ice cover to occur only at those
latitudes that experience seasonal temperature variations including the freezing point. In other words, a
1 K temperature change would not affect snow and ice cover in the tropics (because it is too warm) or
over Antarctica (because it is too cold). Thus, albedo changes will strongly depend on latitude and we
will use the one-dimensional version of the EBM below to estimate this contribution to the climate
sensitivity.

A more general formulation of the climate sensitivity can be derived by assuming a new steady state
with an additional forcing term DQ in the radiative balance at the top of the atmosphere. Let's assume
T0+DT is the new surface temperature and T0 was the original equilibrium temperature. We also assume
that the fluxes that change the surface temperature 

∂T
∂ t

=F (T , y1, y2,. .. , yn)

depend on T and n different variables y, at equilibrium F0=F(T0,y10, … ,yn0) = 0. A radiative forcing can
cause each parameter to change. Thus, for small changes in radiative forcing and temperature at the
new equilibrium we get

∂(T 0+ΔT )
∂ t

=F 0+
∂F
∂T

ΔT+Σn (
∂F
∂ yn

∂ yn

∂T
)ΔT+ΔQ=0 ,

where the partial derivatives are taken at all other variables fixed except  T (second term) or yn  (third
term).  The inverse of the climate sensitivity  l=a-1 is called feedback parameter.  The total feedback
parameter thus becomes

λ=α−1=
ΔQ

ΔT
=−∂F

∂T
−Σn(

∂ F
∂ yn

∂ yn

∂T
):=λ0+Σn λn (2.16)

the sum of the individual contributions from the different variables. Since the partial derivatives depend
on T0 and the yn0 it follows that the climate sensitivity depends on the background state. This can be
illustrated with the surface (ice) albedo feedback. Consider a very warm climate state in which surface
temperatures are above the freezing point everywhere. In this case the ice albedo feedback would be
zero because the snow/ice cover would not change. For colder background states for which certain
regions become snow covered the ice albedo feedback will be positive. It will get stronger the colder
the climate gets since the area of snow cover will increase. However once the entire Earth is snow
covered (Snowball Earth) the ice albedo feedback will  once again be zero since small temperature
changes will not affect snow cover. 

The first term on the rhs of eq. (2.16) is the Planck feedback l0, which assumes a constant temperature
change throughout the troposphere with all other variables fixed. Its value of l0 = −3.23±0.03 Wm-2K-1

has a low uncertainty and is almost identical to the “no feedback” value we derived from the EBM in
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equation  2.15. Variables that have been shown to impact climate sensitivity are water vapor  lw, the
lapse rate (change of temperature with height)  lL,   clouds  lC,  and surface albedo  la (e.g.  through
changes in vegetation or snow/ice cover). The total feedback parameter is the sum of these individual
processes  λ=λ0+λw+λ L+λC+λ a .  See Figure (2.11) and Tomassini et  al.  (2013) and Soden &
Held (2006) for more details. 

The main reason for the large range of climate sensitivities in coupled ocean-atmosphere models is
their different cloud feedback lC. Clouds affect not only the albedo but longwave fluxes as well. We'll
talk more about clouds in chapter  5.1  (Radiative Convective Models), when we discuss the vertical
structure of the atmosphere. The transient climate sensitivity, which is the temperature change at the
time of a certain change in CO2, is different from (and lower than) the equilibrium climate sensitivity

mainly due to the large heat capacity of the oceans. However, models with higher equilibrium climate
sensitivity usually also have higher transient climate sensitivities.

The water vapor feedback is due to an increase in water vapor in a warmer atmosphere according to the
Clausius-Clapeyron equation. Because water vapor is a strong greenhouse gas this is a strong positive
feedback effect. 

The lapse rate feedback is due to the decrease in the moist adiabatic lapse rate with temperature (see
Figure  2.12). The atmospheric temperature profile in the tropics is close to the moist adiabat due to
latent heat release. Thus, as the climate is warmed evaporation at the surface increases exponentially
following the Clausius-Clapeyron equation. Increased evaporation tends to cool the surface. Hence the
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Figure  2.11:  Analysis  of  feedback  mechanisms  in  climate  models  that  contribute  to  the  climate
sensitivity. Each bar represents a feedback parameter from a different model. Note that the water
vapor and lapse rate feedbacks are related resulting in a smaller spread of their sum than the spread
of  the  individual  feedbacks.  Cloud feedbacks,  separated  into effects  on  shortwave  and longwave
fluxes, show the large differences between models. From Tomassini et al. (2013). 



latent heat released at higher altitudes leads to a larger warming in the upper troposphere than at the
surface. Following the 20°C moist adiabat from the surface to 8 km height in Figure 2.12 you'll find a
temperature of about -30°C. Now follow 25°C moist adiabat, which will lead to only -15°C at 8 km
height. Thus, a 5°C warming at the surface becomes a 15°C warming in the upper troposphere due to
the release of latent heat. Larger warming aloft tends to decrease the greenhouse effect. (Remember:
the greenhouse effect is due to emissions to space at lower temperatures than the surface temperature.
The definition of the lapse rate  feedback is  the feedback due to  changes in the lapse rate  without
changes in the mean temperature. Thus, if the upper atmosphere warms more the surface must warm
less. The lapse rate feedback is therefore negative. 

Both water vapor and lapse rate feedback thus depend strongly on the hydrological cycle and vertical

water vapor distributions. Thus it may not be surprising that the combined water vapor plus lapse rate
feedback is less uncertain than the feedbacks individually.

This  concludes  our  analysis  of  the  0D EBM. Although conceptually  interesting it  is  of  limited
practical applicability owing to its simplicity and the neglect of spatial variability. In the following we
will extend the EBM to one dimension including meridional heat transport and temperature variations
with latitude.
Soden, B.J. and I.M. Held (2006) An assessment of climate feedbacks in coupled ocean-atmosphere
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Figure  2.12:  Dry  (solid)  and  moist  (dashed)  adiabatic  lapse  rates  as  a  function  of  surface
temperature. (From http://en.wikipedia.org/wiki/Lapse_rate).



models, J. Climate 19, 3354-3360.

Tomassini et al. (2013) The respective roles of surface temperature driven feedbacks and tropospheric
adjustment to CO2 in CMIP5 transient climate simulations, Climate Dynamics.

 2.4 Stochastic Climate Models

Time series of real climate data (e.g. Figure 2.13) are never smooth like the time series of our EBM but
they contain a lot of variability on different time scales. A general property of real climate data is that
their spectrum is red (Figure 2.14). This means that more variance is located at low frequencies than at
high frequencies. Hasselmann (1976) suggested that this can be explained by the integrative nature of

the climate system. High frequency random variations (weather) are integrated by subsystems with a
large heat capacity, such as the oceans or ice sheets, resulting in a red spectrum response of the climate
system to the white noise forcing. On the other hand, in the real climate system there is forcing on long
time  scales  due  to  slow changes  of  Earth's  orbit  around  the  sun.  This  generates  variance  at  low
frequencies (Huybers and Curry, 2006).

An autoregressive process of order one (AR1) is a simple model in which the state at time n+1
xn1=bxnw , (2.17)

is determined by the state at the previous time n times a constant (0<b<1) plus a white noise term (w).
Such a model produces a red spectrum and describes many observed climate time series to first order. 

Methods to estimate the spectrum, most importantly the periodogram, are described in chapter 12 of the
book  “Statistical  Analysis  in  Climate  Research”  by  von  Storch  and  Zwiers  (2001,  Cambridge
University Press).
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Figure 2.13: Global average surface air temperature anomaly from GISS. 



Hasselmann (1976) Stochastic climate models, Tellus 28, 473-484.

Huybers and Curry (2006) Nature 441, 329-332.

 2.5 The One-Dimensional Energy Balance Model

Incident solar insolation S varies strongly with latitude as shown in Figure 2.15. See Goosse et al. 
(online textbook 2009) for the calculation of daily insolation as a function of Earth's orbital parameters. 
Together with higher albedo at higher latitudes this leads to a strong difference, of 240 W/m2 or a factor 
of 4, of the absorbed solar radiation between the equator and the poles. In contrast the equator-to-pole 
difference in outgoing longwave radiation is only 50% (or ~100 W/m2). The net radiation at the top-of-
the-atmosphere, that is the difference between the absorbed solar insolation and the outgoing longwave 
radiation FSW-FLW, is positive at low latitudes and negative a high latitudes, implying a meridional heat 
transport.
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Figure 2.14: Estimated spectrum of surface temperatures including paleoclimate proxies from high
latitudes (top line), tropics (lower line). From Huybers and Curry (2006). 



Meridional heat transport can be taken into account by using a diffusive parametrization:

F⃗ m=−CK ∇⃗ T=−CK
∂T
∂ y

, (2.18)

with  an eddy diffusivity  K  and  y denoting the  north-south direction in  cartesian coordinates.  This
parametrization of the effect of transient eddies is appropriate at mid latitudes, for the largest spatial
scales and for time scales longer than 6 months (Lorenz, 1979). We can calculate  K as a function of
latitude using the meridional  heat  flux from the satellite  measurements  and temperatures  from the
reanalysis (Figure  2.16). Large fluctuations of  K at low latitudes (including an unphysical negative
value  at  5ºN),  where  the  mean  circulation  (Hadley  cell)  dominates  the  meridional  heat  transport,
indicates that the diffusive parameterisation is problematic there.
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a
b

c d

Figure 2.15: Zonally averaged radiative fluxes at the top-of-the-atmosphere from the Earth Radiation
Budget Experiment (ERBE)  as a function of latitude.  (a) Solar Insolation S (black) and a simple
analytical approximation   S(f)=295+125cos(2f) (red), which we'll use for our 1D EBM. (b) Absorbed
shortwave radiation (solid) and outgoing longwave radiation (dashed). At low latitudes the Earth
receives more energy than it emits back to space, whereas at high latitude it looses more heat by
longwave radiation than it receives from the sun. Integrating the net radiation from one pole yields
the meridional heat transport by the climate system from low to high latitudes as plotted in (c) in PW
(1015W). (d) Zonally averaged surface air temperature from the NCEP Reanalysis.



The  equation  for  the
temperature  change  at  each
latitudinal band becomes

C
∂T
∂ t

=−∇⃗ F⃗ m+F SW−F LW

,
(2.19)

where the first term on the right
hand side  is  the divergence  of
the  meridional  heat  flux.  All
variables  and  parameters  (e.g.
T(f ),  C(f ),  K(f ))  can  now
depend  on  latitude  f ranging
from -p/2 at  the south pole to
p/2 at  the  north  pole.  Since
Earth  is  a  sphere  we  need  to
write  the  Laplace  operator
∇ 2 in  spherical  coordinates

as

∇⃗ F⃗ m=−∇⃗ (CK ∇⃗T )= −1

R2 cosϕ
∂
∂ϕ (CK cosϕ ∂T

∂ϕ ) . (2.20)

In order to discretize eq. (2.19) we set up a grid from 90ºS to 90ºN with N grid cells and constant grid
spacing = j1− j=/N . We will use a staggered grid, that is, we compute fluxes between
two grid cells on their boundaries, whereas the variables (temperature) are evaluated in the center of
each grid box. This leads to two latitude grids, the centers  j=0.5   j  j1  and the boundaries
 j (see Figure 2.17). The meridional transport divergence becomes

−∇⃗ F⃗ m=
−1

R cosϕ
ΔF m

Δϕ
= −1

R cosϕ
F mj+1−Fmj

̃ϕ j+1−ϕ̃ j

,

(2.21)

and the fluxes are computed at the boundaries

F mj=−CK j

cos ϕ̃ j

R

T j−T j−1

ϕ j−ϕ j−1

.

(2.22)

We're also going to re-evaluate the parameters of our albedo
parameterization (eq.  2.5) using the observations. Figure 2.18 shows a fit of a ramp function through
the data and gives the new parameter values.
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Figure  2.17:  Staggered  meridional
model  grid with temperatures  T and
fluxes F around grid point j. 
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Figure  2.16:  Meridional  eddy  diffusivity  for  heat  (symbols)
calculated from the observed meridional heat flux and temperature
gradients displayed in Figure  2.15 using equation  2.18.  At  5ºN a
negative unphysical value of -10 was calculated. For our model we
can use the simple analytical approximation shown as the solid line.

-10



Lorenz, E. N. (1979) Forced and free
variations of weather and climate, J.
Atmos. Sci. 36, 1367-1376.

 2.6 Numerics

If you increase the time step of your 1D
EBM  beyond  a  certain  threshold  the
model  will  blow  up.  Using  your  EBM
you can do another  experiment  using  a
relatively small value for the diffusivity.
Determine  the  time-step  threshold  and
use a value just below this threshold. This
would be the most efficient time step to
run  your  model.  Now  increase  the
diffusivity.  You  will  notice  that  the
critical  time  step  depends  on  the
diffusivity.  In  this  subsection  we  will
learn why this is the case. 

Numerics  is  an  important  issue  in  climate  modeling.  You need to  make sure  that  your  numerical
solution is accurate and that it does not contain artifacts due to the way you discretize or time step the
equations. There are different schemes to solve partial differential equations numerically and we want
to investigate some simple examples below. Generally we want a scheme to have certain properties: 

1) Convergence for  x , t0

2) Stability

3) Accuracy

4) Conservation

5) Behavior of Amplitudes and Phases

6) Positive definite

7) No (or Small) Numerical Artifacts
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Figure 2.18: Albedo (from ERBE) as a function of surface
air  temperature  (from  NCEP)  calculated  from  zonally
averaged  (on  a  10º grid)  data.  The  solid  line  shows  a
simple  ramp function approximation (eq.  2.5) with  TL=-
18°C, TU =18°C, a1=0.64 and a2=0.25. 



Generally a climate model is a numerical solution of a (set of) partial differential equation(s) as an
initial value problem. The challenge will be to compute the interior points (empty circles in Fig. 2.19)
from the initial conditions (black solid points) and the boundary conditions (grey points). This is also
known as forward modeling.

There are two types of boundary conditions

1) Dirichlet conditions specify values at the boundaries

2) Neuman conditions specify normal gradients at the boundaries

Assume we know the solution T(t) at time t. Then we can develop a Taylor series

T  t t =T  t dT
dt
∣t t 1

2 !
d 2 T
dt2

∣t  t 2... (2.23)

such that

dT
dt
∣t=

T t t −T  t 
 t

− 1
2!

d 2 T
dt2

∣t t− 1
3 !

d3T
dt3

∣t t 2−...


correction of order t

(2.24)

Neglecting  terms  of  order  Dt and  higher  we  get  the  “Euler  forward”  scheme.  The  Euler  scheme
converges as  t0 to the true solution.

Now replace  t with − t in eq. (2.24) and add this new equation to (2.24)

dT
dt
∣t=

T t t −T  t− t 
2⋅ t

− 1
3 !

d 3T
dt3

∣t  t 2−...


correction of order  t 2

(2.25)

This is the “centered differences” scheme. Corrections (errors) now scale with  t 2 and approach
zero faster than those of eq. (2.24).

Consider as an example the centered differences scheme

∂C
∂ x

≃
C m1−Cm−1

2 x
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Figure 2.19: Space-time diagram illustrating forward modeling. The
horizontal  axis  represents  neighboring  grid  boxes  in  space.  The
vertical  axis  is  time,  discretized  into  different  steps.  Given  initial
values (n=0) and boundary conditions the interior grid points can be
calculated.

n=0

n=1

n=2

initial values

time

boundary
conditions



with a cosine wave C= C cos kx  represented numerically as C m= C cos kx  and
C m1= C cos k  x x . We know that the exact solution is 

∂C
∂ x

=− C k sin kx .

Using the trigonometric formula cos  x± y=cos x cos  y∓sin  xsin  y  we get for the numerical 
solution:

C m1−Cm−1

2 x
=−

C
 x

sin kxsink  x  
 x0

∂C
∂ x

.

Thus the centered differences scheme converges against the true solution. The wave number can have
values  k=2/n x ; n=2,3, ... such that  the ratio  between the numerical solution and the true
solution becomes

C m1−Cm−1

2 x
/ ∂C
∂ x

=
sin k x

k  x

n sin k x /k x

3 0.41

4 0.64

6 0.82

8 0.9

thus, for fixed   x only waves with large  n (i.e. large wave lengths) are well represented. Waves
with n<8 have errors of more than 10%.

 2.6.1 Numerical Solution of the Advection Equation

In our EBM we used a diffusion equation for the meridional transport of heat. In more complex fluid
dynamical models advection equations are used for the transport of a property with the velocity of the
fluid. Thus the advection equation is one of the most important equations in climate models and here
we  want  to  use  it  as  an  example  to  illustrate  the  properties  of  different  numerical  schemes.  The
advection equation in one dimension is 

∂C
∂ t

=− ∂
∂ x

uC  , (2.26)

which describes the transport of property  C with the fluid velocity  u. Assuming a constant velocity
everywhere we get

∂C
∂ t

=−u
∂C
∂ x

. (2.27)

An arbitrary function f is a solution of (2.27) if 

C  x , t = f  x−ut  . (2.28)
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von Neuman Stability Analysis

Now let's assume a wave function at time t=0

C  x ,0=Aeikx=Acos kxisin kx , with i2=-1 (2.29)

Then at time t the solution is a plane wave:

C  x , t =Aeik x−ut  . (2.30)

wave number wavelength angular frequency period frequency

k=
2


=
2
k
=u


=
2
T

T=
2

= 1


= 1
T
= u


Now solve eq. (2.27) numerically by discretizing time and 
space:

t=n t n=0,1,2, ...

x=m x m=0,1, 2,...

C  x , t =C m⋅ x , n⋅ t =Cm , n=
n e ikm x , (2.31)

with  the  amplification  factor k  .  Each time  step  the
solution is multiplied by  . Thus, if 1 the solution
will diverge (blow up) and if it is 1 it will be damped.

Now let's examine the  FTCS (forward in time centered in
space) scheme (Fig.   2.21  ):

C m ,n1−C m , n

 t
=−u

Cm1,n−C m−1,n

2⋅ x
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Figure  2.20:  Advection  with  constant  velocity  u  moves  an  arbitrary  tracer
distribution C through space without changing its shape.
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Figure  2.21:  Space-time  diagram  of
FTCS scheme.
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=1−i
u t
 x

sin k x

Thus ∣∣1 for all k. The FTCS scheme is unconditionally unstable and therefore useless.

Now let's use centered differences (2.25) for eq. (2.26)

C m , n1−C m , n−1

2⋅ t
=−u

Cm1,n−C m−1,n

2⋅ x
(2.32)

C m , n1=C m , n−1−
u⋅ t
 x

C m1, n−Cm−1,n  (2.33)

This is the  CTCS (centered in time, centered in space), or
“leap-frog” scheme (Fig. 2.22). The first time step has to be
taken by a Euler scheme and two time steps in the past need
to be stored in memory. 

Now  let's  study  the  properties  of  the  leap-frog  scheme.
Insert the analytical solution eq. (2.31) in (2.33):

=−1−
u t
 x

e ik x−e−ik  x 

⇔2=1−2i (2.34)

with =
u t
 x

sin  k x  . The solution of this quadratic equation is

=−i±1− 2 (2.35)

We distinguish two cases:

Instable case ∣∣1 :

=−i ±S  , with S= 2−10 .

If 1 => S1  => ∣n∣∞ .

If −1 => −S−1  => ∣n∣∞ .

Stable case ∣∣1 :

We can express sigma as a sine function =sin  and using
the trigonometric relation sin2 cos2 =1 we see that the
solution  of  =−isin ±cos  has  an  absolute  value  of
one, it lies on the unit circle in the complex plane

={ e−i

e i  } , with 

Now insert this in eq. (2.31) we get

C m, n=Me−i nEei n eikm x (2.36)
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Figure  2.22: Space-time diagram for the
leap-frog (CTCS) scheme.
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and 

C m , 0=ME eikm x , (2.37)

thus with (2.29) A=ME or

C m , n=A−E e
ik m x−

 n
k



P

−1n E e
ik m x

 n
k



N

, (2.38)

with a physical mode P, and a numerical mode N, which changes sign each time step. Now we only
have to determine E. For the first time step we have

C m , 1=Cm ,0−
u t
2 x

Cm1,0−C m−1,0 (2.39)

with (2.37) we get

C m , 1=A1−isin e ikm x=A−E  eikm x−i −Eeikm xi

Solve for E and enter into eq. (2.38) yields

C m , n=A
1cos 
2cos 

e
ik m x−

n
k

−1n A

1−cos 
2cos 

e
ik m x

 n
k


. (2.40)

It can be shown that (2.40) converges to (2.30) provided  x0 it follows that  uk t  and
for  t0 it follows that ≪1  and hence =sin ≃  and (2.40)  converges to

C m , n A
1cos 
2cos 

eik  x−ut 


P

−1n A
1−cos 
2cos

e ik  xut


N

 A ek  x−ut

. 

Thus, the leapfrog scheme is stable (provided  ∣∣1 ) and it converges against the true solution.
However,  for  finite  time  steps  and  finite  grid  spacing  a  numerical  solution  N appears,  which  is
unphysical. The physical solution  P describes a plane wave traveling towards the right, whereas  N
changes sign every time step and travels towards the left. 

The  condition  for  stability  ∣∣=∣u t / x sink  x ∣1 must  hold  for  all  wavelength,  thus  it
follows that ∣u t  / x ∣1 , which can be regarded as a condition for the maximum time step

 t
 x
∣u∣

. (2.41)

Equation  (2.41)  is  the  CFL criterion (Courant-Friedrichs-Lewy,  1928).  Physically,  this  criterion
expresses the fact that the information flow in our numerical model is limited between neighboring grid
cells (see below graphic). Thus, within one time step information can be transported maximally one
grid cell. However, if the advection velocity is larger than  x / t (see black arrows in left panel of
Figure 2.23) information is transported farther than one grid cell. Therefore, in climate models the time
step must always be smaller than the grid spacing divided by the maximum velocities. For a large scale
ocean circulation model, for example, velocities of up to 1 m/s can occur. Given a grid spacing of 3º or
300 km the time step must be smaller than 3 days. An atmospheric model with the same resolution
needs to use a time step of about 1 hour since the maximum velocities are much larger (~80 m/s in the
jet stream) than those in the ocean. 
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The numerical mode occurring in the leapfrog scheme is artificial. It is due to the decoupling of two
grids as illustrated in the right panel of Figure (2.23). The numerical mode can be removed by using an
Euler forward step (FTCS) once in a while. 

The upwind scheme is illustrated below (Fig. 2.24). 

C m ,n1−C m , n

 t
=−u {

Cm , n−Cm−1,n

 x
,u0

Cm1,n−C m , n

 x
,u0}  

For this scheme the amplification factor is

=1−∣u t
 x ∣1−cos k  x−i

u t
 x

sin k x

∣2∣=1−2∣u t
 x ∣1−∣u t

 x ∣1−cos k x

We find again the CFL criterion as a condition for stability. This scheme is good in a physical sense
since properties are advected only from the direction of the velocity. However, the upwind scheme is
only accurate to first order in the spatial derivatives and therefore it has “numerical diffusion”.

Other properties of a numerical scheme might be important for particular applications. In some cases,
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Figure  2.23:  Left: Illustration of  CFL criterion.  If  the time step is  too large (black arrows) the
information  in  the  numerical  model  cannot  propagate  with  the  advection  velocity  (green  line).
Reducing the  time step  (red arrows)  leads to  a broadening of  the  cone of  information allowing
propagation of the information with the advection velocity. Right: Illustration of grid decoupling in
leapfrog scheme. A chess board pattern of information transfer appears in which the red grid points
do not communicate with the black grid points.
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e.g. for the simulation of atmospheric chemistry or ocean biology, it is important that the scheme is
positive definite. This means that the concentration cannot become negative. Negative concentrations
of  chemical  or  biological  species  would  lead  to  problems in  the  calculation  of  the  source  terms.
Consider a chemical species such as nitrous oxide (N2O) that is removed by photodissociation in the
upper  atmosphere.  The  removal  rate  is  proportional  to  the  concentration  of  the  species.  If  small
negative  concentrations  would  occur  due  to  errors  in  the  numerical  scheme  this  would  lead  to
production of N2O  rather than destruction. 

More accurate numerical schemes than the ones discussed above have been developed. An example of
a  highly  accurate,  positive  definite  scheme  without  numerical  diffusion  is  the  Prather  scheme.
However, this scheme comes at the cost of much more required memory because it stores higher order
moments of the tracer distributions. 

 2.6.2 Numerical Solution of the Diffusion Equation

Next we want to examine the diffusion equation, which we have already used in our 1D EBM

∂C
∂ t

=K
∂2C
∂ x2 .

The FTCS scheme leads to the following discretization:

C m , n1−C m , n

 t
=K

Cm1,n−2Cm , nCm−1,n

 x2 , (2.42)

or

C m , n1=C m , n
K t

 x2 C m1,n−2Cm ,nCm−1,n .

This leads to 

=1−
4 K  t

 x2
sin 2

k  x
2

 ,

or

2=1−2
4 K  t

 x2
sin2 

k x
2

4 K t

 x2 
2

sin 2
k  x

2
 .

The condition for stability ∣∣1 implies that 

 t
 x2

2 K
. (2.43)

This is the analog to the CFL criterion (eq.  2.41) for the diffusion equation. Now the minimum time
step  depends  on  the  diffusivity.  Surprisingly  though,  the  FTCS scheme is  stable  for  the  diffusion
equation, whereas it is unstable for the advection equation.

Implicit Schemes

Consider again the diffusive equation with the FTCS scheme and replace n on the right hand side of 
equation (2.42) with n+1. 
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C m ,n1−C m , n

 t
=K

Cm1,n1−2Cm ,n1C m−1,n1

 x2

This  is  the fully  implicit  or  backward  in  time scheme.  It  can  be
solved by solving a set of linear equations 

−Cm−1,n112C m ,n1−C m1,n1=Cm ,n ,

with  =K t / x 2 .  This is a tridiagonal system that can be
solved. The implicit scheme is  unconditionally stable for any  t
! However, the implicit scheme is only of order one accurate and for
the advection equation it displays numerical diffusion.

References: 

Numerical Recepies in Fortran 77: The Art of Scientific Computing,
William H. Press et al. , 1992, Cambridge University Press, ISBN 0-521-43064-X. Chapter 19 (page 
818)

R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der 
mathematischen Physik, Mathematische Annalen, vol. 100, no. 1, pages 32–74, 1928.

 2.7 The Two-Dimensional Energy Balance Model

Now add zonal resolution and transport:

∇ F=−∇CK ∇ T =− 1
R2 cos2

∂
∂ CK  ∂T

∂ 
−F



− 1
R2 cos

∂
∂ CKcos ∂T

∂  (2.44)

assuming isotropic diffusion  Kl=Kf=K(f).  We can discretize  the  zonal  heat  flux  and the  heat  flux
divergence analogous to the treatment of the meridional fluxes

F i , j
 =−

K j

R
T i , j−T i−1, j

i−i−1

(2.45)

∇ F=− 1
R cos2

F i1, j
 −F i , j




−... (2.46)

Use a zonal grid with cyclic boundary conditions F
M+1

 = F
1
, T

M+1
=T

1
 and M=36 boxes with a grid

spacing Dl=2p/M=10º.
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Test your 2D model first. The results should be zonally symmetric and the same as for the 1D model. 
Now introduce zonal asymmetry by constructing an idealized land sea mask and use spatially 
dependent heat capacity

 C  ,={ C A , land
CO=20C A ,ocean }  . (2.47)
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 3 The Hydrological Cycle
Water cycles through all components of the climate system (Figure 3.1). Evaporation from the oceans
and  water  vapor  transport
and precipitation over land
are  essential  to  provide
freshwater  to  terrestrial
ecosystems.  Phase  changes
of water are also associated
with  release  or  absorption
of  latent  heat.  Evaporation
leads  to  cooling  of  the
surface and condensation in
the  atmosphere  releases
latent  heat  warming  the
surrounding  air.  This
vertical  transport  of  latent
heat  is  important  in
determining  the
atmospheric  lapse  rate
(Figure  2.12).  Horizontal
transport  of  water  vapor
and  latent  heat  has
important  implications  for
temperature  distributions
and ecosystems. 

The  hydrological  cycle  presents  a  particularly  difficult  challenge  for  climate  models.  Clouds,
precipitation, permafrost, groundwater flow, and interactions between the ocean and ice shelfs are some
of the major issues in climate modeling.

Trenberth K. E., Smith L., Qian T., Dai A., and Fasullo J. (2007) Estimates of the Global Water Budget
and Its Annual Cycle Using Observational and Model Data, J. Hydrometeorology 8, 758-769.
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Figure 3.1: The global hydrological cycle. From Trenberth et al. (2007)



 4 The Carbon Cycle

Carbon is an essential element of all living organisms. It is taken up by plants during photosynthesis
and released during respiration and oxidation of organic matter by bacteria both on land and in the
ocean. On land most carbon is locked in living vegetation and in soils. Ocean biota on the other hand
contain only a very small amount of carbon, most of which in microscopic plankton. Phytoplankton—
plants that rely on photosynthesis for their growth—have to be small and light so that they don't sink
out of the sun-lit upper ocean into the dark abyss. But they reproduce quickly and thus have similar
rates of net primary production (carbon uptake) than the land biosphere. Some of the carbon fixed by
ocean biota sinks into the deep ocean, where it is sequestered for a long time from the atmosphere. This
process, called the biological pump, decreases CO2 concentrations in the surface ocean and atmosphere.
Thus, without ocean biology CO2 concentrations in the atmosphere would be higher and climate would
be warmer. In contrast to land, most carbon in the ocean occurs in inorganic form (dissolved inorganic
carbon). 
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Figure  4.1: The global carbon cycle. From IPCC 2013. Black (red) arrows and numbers represent
pre-industrial (anthropogenic) fluxes.



The ocean contains more than 40 times as much carbon than the atmosphere (Fig. 4.1). Humans have
increased atmospheric CO2 concentrations by burning of fossil fuels and land use changes. Some of the
excess carbon is taken up by the ocean and some is taken up by vegetation and soils on land. 

The carbon cycle presents  a challenge to modeling no less than the hydrological  cycle.  Biological
systems are obviously complex. Many different species of plants and animals interact in intricate food
webs and ecosystems. Microbes have important impacts on biogeochemical cycles such as those for
nitrogen and oxygen. Since biological organisms require not only carbon but also other nutritional
elements such as nitrogen, phosphorous, and iron, the cycles of those elements are important too. 
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 5 Atmosphere

 5.1 Radiative-Convective Models

The simple energy balance model of Figure (2.4) can be modified and extended to include more layers
as shown in Figure (5.1). Now we assume the atmosphere is transparent to shortwave radiation and
atmospheric layers 1 and 2 are completely opaque for longwave radiation. Further assuming that the
atmospheric layers are perfect black bodies, the energy balance at the top of the atmosphere becomes

S 1−= T 1
4 . (5.1)

For layer 1 the energy balance is

T 2
4=2 T 1

4=2 S 1− , (5.2)

for layer 2 we have

 T 1
4 T s

4=2 T 2
4=4 S 1− ,

and at the surface 

S 1− T 2
4= T s

4 .  (5.3)

We  notice  that  the  temperatures
increase  downward.  Solving  these
equations for the surface temperature
we get

T s
4=3S

1−


=3T 1
4 . (5.4)

Extending the model to n layers we see that the surface temperature is equilibrium will be always be
larger than the temperature of the upper layer.

T s=
4n1 T 1 . (5.5)

For 2 layers the surface temperature is Ts = 335 K and the atmospheric temperatures are T2 =  303 K
and  T1 = 255 K. We see that the surface temperature is much too warm compared to the observed
surface temperature of the Earth of about 288 K. What could be the reason for this discrepancy? First,
we know that the real atmosphere is not entirely opaque to longwave radiation and some part of it is
transmitted to space (see Figure 2.5). This suggests that the simple model overestimates the greenhouse
effect of Earth's atmosphere. But the main reason for the overestimation of surface temperatures is the
neglect of vertical heat transport by the atmospheric motions. However, this simple model captures the
first order vertical structure of the atmosphere and shows how absorption of longwave radiation in the
atmosphere (i.e.  the greenhouse effect)  leads  to  warmer surface temperatures  and to a decrease of
temperatures in the atmosphere with height. 
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Figure 5.1: Simple two-layer radiative equilibrium model.
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The  most  accurate,  but  also  the  most
computationally  expensive,  models  of
radiative  transfer  are  line-by-line  models
(see  Figure  2.5),  which  calculate
transmission,  absorption,  emission  and
scattering of  radiation for each absorption
line  of  many  different  gases  in  the
atmosphere. Those models are complex and
in  climate  models  they are  often  replaced
by simpler  models  that  calculate  radiative
transfer in broader frequency bands. Those
models  confirm  qualitatively  the  results
from  our  simple  2  layer  model  that
temperature  decreases  with  altitude   and
that radiative transfer alone leads to surface
temperatures  warmer  than those observed.
In the real atmosphere such warm surface
temperatures  would  trigger  convective
instability since the air in contact with the
ground becomes lighter  than the  air  aloft,
which would lead to vertical  motion.  This
process can be included in the model e.g. by
limiting  the  maximum  lapse  rate  to  the
observed  global  mean  value  of  6.5  K/km
and  vertically  redistributing  the  heat
required  to  do  so.  This  is  a  radiative-
convective model.

Radiative-convective models are useful to understand the effect of individual greenhouse gases on the
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Figure 5.3: Vertical distribution of ozone (left) and water vapor (right) used in Manabe and Strickler
(1964).

Figure 5.2: Vertical equilibrium temperature distribution
calculated with a pure radiative transfer  model  (solid)
and  a  radiative  convective  model  using  different
maximum  lapse  rates.  From  Manabe  and  Strickler
(1964).



vertical temperature structure. The pioneering work by Manabe and colleagues in the 60's showed that
upper  tropospheric  temperatures  are  much too  cold  and  surface  temperatures  are  much too  warm
compared with observations if only radiative transfer is taken into account (Figure 5.2). However, if the
lapse rate is limited and a vertical energy transport due to convection is included both surface and
upper tropospheric temperatures are in much better agreement with the observations. These calculations
consider water vapor, CO2 and ozone as radiatively active gases. The CO2 mixing ratio is assumed
constant whereas for water vapor and ozone fixed vertical distributions based on observations are used
(Fig. 5.3).  

The  left  panel  of  figure  5.4 shows that  a  CO2 level  of  290 ppm leads  to  ~10 K warmer  surface
temperatures than an atmosphere without CO2. Absorption of solar radiation by ozone leads to constant
temperatures in the tropopause and increasing temperatures in the stratosphere. The net heat loss due to
radiative fluxes in the troposphere is balanced by heat gain through convection (right panel Figure 5.4).
Water vapor is the dominant greenhouse gas in the troposphere. However, because its mixing ratio
decreases  quickly  with  height  it  is  less  important  in  the  stratosphere,  where  the  heat  balance  is
dominated between radiative cooling by longwave emission of CO2 and heating by solar absorption of
ozone. 

Because of this balance an increase in atmospheric CO2 leads to a cooling of the stratosphere. The
current cooling trend in the stratosphere is probably caused by both, decreasing ozone and increasing
CO2. 

Clouds affect longwave and shortwave fluxes. They reflect solar radiation very efficiently, which cools
the surface during the daytime. But they are also almost perfect absorbers of longwave radiation, which
warms the surface, particularly at night. Which of these two opposing effects wins depends on the
height of the cloud, its albedo and its thickness. 
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Figure 5.4: Left: The effect of CO2 and ozone on the vertical temperature distribution in a radiative-
convective model.  Right: Heating rates associated with longwave (L) and shortwave (S) radiative
fluxes. The thick line is the net flux. From Manabe and Strickler (1964).



In  radiative-convective  models  low
clouds cool the surface and high clouds
warm  the  surface  (Figure  5.5).  The
lower  the  cloud  top  the  smaller  the
longwave warming effect  because  the
cloud  will  emit  radiation  at  a
temperature  similar  to  the  surface,
whereas much of the solar radiation is
reflected  back  to  space.  High  clouds
however,  emit  longwave  radiation  at
much  colder  temperatures,  which
increases the greenhouse effect. 

We  can  understand  this  a  little  more
quantitatively  by  considering  the
change of the radiative balance at  the
top  of  the  atmosphere  if  a  cloud  is
added. Let's assume the cloud will have
an albedo of acloud whereas the clear sky
albedo  is  aclear.  The  difference  in
shortwave radiation will thus be

 

 F SW=S 1−acloud −S 1−aclear=−S acloud−aclear=−S a0 . (5.6)

Let's also assume that the cloud top is above most of the longwave absorbing gas (water vapor), which
limits the validity of our model to above ~ 4 km. In this case the longwave emission to space can be
approximated  by blackbody radiation  from the  cloud top  F LW= T ct

4 ,  so  that  the  difference  in
longwave radiation at the top of the atmosphere becomes

 F LW= T ct
4 −F LWclear . (5.7)

Thus the change in longwave flux will be negative if the cloud top is higher than the effective height of
the clear sky longwave emission. The total change in the radiative balance at the top of the atmosphere
becomes

 RTOA= F SW− F LW=−S F LWclear−T ct
4 . (5.8)

Assuming a constant lapse rate we can replace the  temperature of the cloud top with its height

 T ct=T s− zct . (5.9)

Figure (5.6) shows the cloud radiative forcing at the top of the atmosphere according to equation (5.8)
for a solar flux of 342 Wm-2, a clear-sky outgoing longwave flux of 265 Wm-2, a surface temperature of
288 K and a lapse rate of 6.5 K/km. Positive values will lead to a warming and negative values will
lead to a cooling. 

Table  5.1: Cloud Radiative Forcing as Estimated from Satellite Measurements. From Harrison et al.
(1990).

Average Cloud-free Cloud forcing
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Figure  5.5:  Effect  of  clouds  on  the  vertical  temperature
distribution. From Manabe and Strickler (1964).



OLR 234 266 31

Absorbed solar radiation 239 288 -48

Net radiation 5 22 -17

Albedo 30% 15% +15%

According to Figure  5.6 high clouds with a low albedo lead to a warming, whereas low clouds with
high albedo lead to a cooling.

Harrison et al. (1990) Seasonal variation of cloud radiative forcing derived from the Earth Radiation 
Budget Experiment. J. Geophys. Res. 95, 18,687-18703.

 5.2 A Simple Model of the Hadley Circulation

In 1735 George Hadley proposed that strong solar heating in the tropics causes air to rise. Close to the
surface air must therefore flow towards the equator, whereas aloft the air must flow poleward. Hadley
thought that this circulation cell extended all the way to the poles, but observations quickly showed
that the extend of the cell is limited to the tropics. 

Held and Hou (1980) proposed a simple model to understand why
the  width  of  the  Hadley  cell  is  limited.  Assume  a  2-level
atmosphere (Figure 5.7) with an upper frictionless layer in which
angular momentum M is conserved determining the zonal velocity
u=uM. Remember that the angular momentum per unit mass of an
air parcel is its velocity times its radius r from the axis of rotation
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Figure  5.6:  Cloud  radiative  forcing  DRTOA as  a  function  of  change  in
albedo and cloud top altitude. Negative values are show as dashed lines.
From Hartmann (1994).
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M=ru (see figure to the right). 

The lower layer is assumed to be dominated by friction such that
the zonal velocity is zero. Heating near the equator will set up a clockwise circulation as depicted in
Figure 5.7 with rising air near the equator and subsidence at higher latitudes. Newtonian relaxation of
potential  temperature  towards  some  radiative  equilibrium  temperature  E  is  assumed  for  the
heating:

∂
∂ t

=
−E

E

,

with E=0−3sin 2−1/3 . For small  this leads to E=E0− y2 /R2 , where y
is the distance from the equator. Conservation of angular momentum (per unit mass) M is assumed as
well as no zonal motion at the equator u =0=0 . At the equator the velocity of an air parcel is
that of the solid Earth (  R=462 m/s), its angular momentum is also that of the rotating Earth:

M= R2 , (5.10)

where =2/24 h=7.3⋅10−5m/ s is the angular velocity of the Earth and R=6370 km is Earth's
radius. At latitude  the zonal velocity will be that of the solid Earth plus that of the air relative to
the Earth and its angular momentum will be

M= R cosuR cos .  (5.11)

From eqs. (5.10) and (5.6) it follows that the zonal wind increases with latitude as

uM= R
sin2
cos

≃

R

y2 . (5.12)

Equation  5.12 predicts a strong increase of uM with latitude such that at 30º the wind would blow at
110 m/s eastward. This is much stronger than the observed maxima in the jet stream. Turbulence and
eddy activity leads to dissipation of potential vorticity, such that the assumption of no friction is no
longer valid. Nevertheless, angular momentum conservation explains to a first order the acceleration of
the zonal wind in the upper atmosphere - similar to a spinning ice dancer who draws her arms towards
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Figure 5.7: Two layer model of the Hadley cell (Held and Hou,
1980). A frictionless upper layer is assumed in which the zonal
velocity  u=uM is  determined  by  angular  momentum
conservation. In the lower layer friction leads to u=0.
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the body and spins faster. 

The width of the Hadley cell can be determined by considering the vertical shear

∂ u
∂ z

=
uM−0

H
=


RH

y2 , (5.13)

and the thermal wind balance

2 sin ∂ u
∂ z

=− g
0

∂
∂ y

, (5.14)

which leads to 

∂
∂ y

=
−220

R2 g H
y3 ,

or

M=M0−
20

2 R2 g H
y4 .

The integration constant M0 can be determined through an energy (temperature) conservation 
argument. If we require no net heating the areas between the two curves in  Fig. (5.8) upper panel must 
be equal or

∫0

y p

dy=∫0

y p

E dy .

Using also M  y p=E  y p  it follows that the width of the Hadley cell is

y p= g H 5

203 
1/2

and 

E0−M0=
2 g H 5

R220 18
.

Using =100 K , 0=288 K , and H=8 km the width of the Hadley cell becomes yp = 2.9·106

m or about 3000 km or 30º, which is in good agreement with observations. However, the model by
Held and Hou predicted a much too slow circulation. 
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Lindzen and Hou (1988) showed subsequently that the reason for the underestimated circulation was
the neglect of the seasonal cycle by Held and Hou. Including the seasonal cycle by shifting the latitude
of  maximum heating  0 only  slightly  away  from the  equator  leads  to  a  strong increase  of  the
circulation  strength.  A shift  by  4º  increases  the  circulation  by  a  factor  of  100!  The  circulation  is
proportional to the heating  −E ,  which increases strongly for a slight shift  in the latitude of
maximum  heating  from  the  equator  (see  Figure  5.8).  This  result  again  highlights  the  non-linear
behavior  of  the  climate  system.  Accounting  for  the  seasonal  cycle  leads  to  an  annually  averaged
circulation much stronger than one forced by annual averaged heating. 

Figure 5.9 shows the Hadley circulation and the zonal mean flow in the atmosphere from a reanalysis
and the coarse resolution OSUVic climate model. The reanalysis is a global weather prediction model
that has been run for a long time (40 years for the NCEP reanalysis) assimilating many observations
that are routinely used for weather prediction. Although it is a model product it can be assumed to be an
approximation of the real world. Some variables (e.g. temperature, pressure and velocities), however,
are predicted better than others (e.g. precipitation). The reanalysis shows rising motion in the summer
hemisphere near the equator and sinking motion between 15° and 30° in the winter hemisphere. 
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Figure  5.8:  Radiative  equilibrium  temperature  E /0

(dashed) and model temperature /0  (solid) for the Held
and Hou (1980) model with maximum heating at the equator (
0=0 , top panel) and the Lindzen and Hou (1988) model

with maximum heating shifted slightly north of the equator (
0=6o , bottom panel). From Lindzen and Hou (1988).



The Hadley circulation has important implications for the hydrological cycle. Rising motions near the
equator are associated with deep convection, release of latent heat and intense precipitation. Dry and
cold air flows poleward in the upper troposphere. Subsidence in the subtropics leads to dry conditions
near the surface. The is the reason why most deserts are located at subtropical latitudes and why the
surface ocean salinity is high in the subtropics. The equatorward flow near the surface picks up water
vapor from evaporation at the surface and moves it into the Intertropical Convergence Zone (ITCZ).
Thus  there  is  divergence  of  meridional  water  vapor  transport  in  the  subtropical  atmosphere  and
convergence in the tropics (Figure 5.10).
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Figure  5.9: Atmospheric circulation for boreal summer (June-July-August, left) and boreal winter
(December-January-February,  right)  from  the  NCEP  reanalysis  (top)  and  the  OSUVic  model
(bottom). Colors show zonal wind velocities (ms-1), with blue indicating easterlies and orange and red
westerlies and 5 ms-1 isotach difference. White lines are drawn every 10 ms-1 isotach difference. Black
contour  lines  show  the  meridional  streamfunction  (1010 kgs-1),  where  positive/negative  values
(solid/dashed lines) indicate clockwise/counterclockwise flow. From Schmittner et al. (2011).
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 5.3 General Circulation
Models

General Circulation Models of the
atmosphere solve conservation
equations for momentum, mass, 
energy, water and possibly others
(e.g. aerosols). The most commonly
used set of equations is introduced
below. For a full derivation see e.g.
book by Washington & Parkinson
2005 page 62.

 5.3.1 The Primitive
Equations

The momentum equations are based
on Newton's second law

d u
dt
=∑ F ,

 (5.15)

which states that the change in momentum (velocity times mass) of an object with time is due to the 
sum of the forces acting on it. Equation 5.15 results from dividing by the mass, so that the forces on the 
right hand side are in forces per unit mass. The vectors are three dimensional. The time derivative in 
equation 5.15 is the total (Lagrangian) derivative moving with the object. The Navier-Stokes 
equations govern the motions of a fluid. In the case of an incompressible Newtonian fluid the Navier-
Stokes equations are

d u
dt
=∂u
∂ t
u ∇u


inertia

= −1

∇ p


pressure gradient

∇ 2u
viscosity

 f
other body forces

.  (5.16)

Now the total derivative 

d
dt
= ∂
∂ t
u ∇

is split into the (local) change at a fixed location (partial derivative) and the advection (of momentum) 
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Figure  5.10:  Top:  Zonally  averaged  evaporation  (E)  and
precipitation (P). Middle: E-P. Bottom: Meridional freshwater
flux. From ERA 40 reanalysis.



with the fluid (second term). Both terms are called the inertia. The terms on the right hand side are the 
pressure gradient force, the frictional force due to viscosity (m) and other body forces. On a rotating 
sphere Coriolis and centripetal forces enter the momentum equations, which, in spherical coordinates 
become:

du
dt
− f u

tan
R

v=− 1
Rcos

∂ p
∂

F u (5.17)

dv
dt
 f u

tan
R

u=− 1
R

∂ p
∂

F v (5.18)

g=− 1

∂ p
∂ z , (5.19)

where the zonal, meridional and vertical components of velocity are u=u , v , w , f =2 sin  
is the Coriolis parameter,  , , z  are longitude, latitude and depth (height), p is the pressure, r the 
density and R Earth's radius. In the vertical momentum equation (5.19) the inertial terms have been 
neglected because they are much smaller than the acceleration due to gravity g=9.81 ms-2 and the 
pressure gradient term. 

Assuming an incompressible fluid the equation for the conservation of mass becomes

∂
∂ t

=−∇u =0 ∇u=0 . (5.20)

The equation for the conservation of energy can be derived from the first law of thermodynamics to 
become an evolution equation for temperature:

cv
dT
dt
=−p

d
dt  1

 FT .  (5.21)

The first term on the right hand side of equation 5.21 is due to adiabatic expansion/compression of the 
fluid and the second term represents all diabatic processes, such as radiation or latent heat release 
during condensation of water vapor. In climate models equation 5.21 is often replaced by an equation 
for the potential temperature 

=T  p0

p 



d 
dt

=F ,

which results in the cancelation of the adiabatic expansion/compression term. =R ' /c p with R' the 
gas constant of dry air and cp the heat capacity at constant pressure. The potential temperature is the 
temperature an air or water parcel would have if adiabatically brought to the surface.

The equation for the conservation of water vapor can be written as an evolution equation for specific 
humidity q, which is the mass of water vapor per mass of moist air 

dq
dt
=F q , (5.22)

where Fq includes precipitation and evaporation. Precipitation is usually calculated as the excess water 
vapor above a certain threshold for relative humidity (typically about 80%). Relative humidity is 
defined as the specific humidity divided by its saturation concentration. The saturation specific 
humidity depends exponentially on temperature (Clausius-Clapeyron relation).
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The equation of state relates density, temperature and pressure. For air it is the ideal gas law 

p=R ' T , (5.23)

and for sea water it is a non-linear empirical function including salinity 

= p ,T , S  . (5.24)

Equations 5.17 - 5.23(5.24) comprise a set of seven equations with seven unknowns (u,v,w,r,p,T,q), 
known as the primitive equations, which can be solved principally if assumptions on Fu, Fv, FT and Fq 
are made and if boundary conditions are specified.

 5.3.2 Surface Processes

Surface  fluxes  in  GCMs are  calculated  according  to  empirical  relations,  so  called  bulk  formulae.
Momentum fluxes (wind stress) are

Fu=C m∣u∣u
(5.25)

F v=C m∣u∣v , (5.26)

the sensible heat flux

F=c p C∣u∣s−a  ,  (5.27)

and the moisture flux

Fq=Cq∣u∣qs−qa  .  (5.28)

The transfer coefficients for momentum Cm , which are also called drag coefficients, for heat CT and 
moisture Cq are in the order of 10-3 and depend on surface roughness, the stability of the boundary layer 
and other surface properties such as soil moisture, vegetation or snow cover. Boundary layer theory 
(Monin-Obukhov similarity theory) can be used to calculate them.  s and qs are the surface values of 
temperature and specific humidity, whereas a and qa are the values in the atmosphere, typically at 
10 m. Over sea ice covered oceans the heat and moisture fluxes are multiplied by (1-a), where a is the 
fraction of the grid cell area covered by sea ice. The surface specific humidity is the saturation specific 
humidity qsat(T) over the ocean. 

 5.3.3 Moist Processes

The saturation specific humidity depends exponentially on temperature according to the Clausius-
Clapeyron relation

qsat=0.622
pws

pa− pws

, (5.29)

where 

pws=e77.3450.0057T−7235 /T /T 8.2 (5.30)

is the water vapor partial pressure,  pa is the air pressure and the temperature T is in Kelvin 
(http://www.engineeringtoolbox.com/humidity-ratio-air-d_686.html). Figure 5.11 shows that qsat 
approximately doubles for each 10 K increase in temperature. The Clausius-Clapeyron relation can be 
derived from classical thermodynamics (see e.g. Washington & Parkinson 2005 or Gill 1982).
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The saturation specific humidity can be used to 
calculate precipitation. A simple way is to 
determine the excess specific humidity above a 
certain threshold (typically 80%) for relative 
humidity rh = q/qsat. Precipitation is also associated 
with the release of latent heat of condensation or 
fusion depending on the ambient temperature. In 
the real world condensation happens only at 100% 
relative humidity but since the model grid scale is 
much larger than individual rain clouds it is 
warranted to use a smaller threshold because larger 
volumes of the atmosphere are usually a mix of 
clouds and cloud-free air and thus are rarely at 
100% relative humidity.

 5.3.4 Parameterizations

GCM  grid  boxes  are  typically  several  hundred
kilometers in  size and therefore equations  5.17 -  5.23(5.24) have to  be  averaged over large areas.
Processes on spatial  scales  smaller than the grid scale must be described by formulas that include
resolved  quantities.  Consider  the  advective  flux  uC of  property  C (e.g.  temperature  or  specific
humidity) with the velocity u. These terms occur e.g. on the left hand side of equations 5.21 and 5.22.
Each variable is composed of its mean over the grid cell and the deviation from the mean 

u=uu ' and C=CC ' , with C '=0 . (5.31)

This is called Reynolds decomposition. 

The mean flux becomes

uC=uu ' CC ' =u Cu C '
0

u ' C
0

u ' C '=u Cu ' C ' , (5.32)

where the first term on the right hand side is the flux due to the mean flow and the second term is the
flux due to sub-grid scale fluctuations. These sub-grid scale fluxes are expressed using (turbulence)
theory and/or empirical formulas. 

In global coarse-resolution ocean models, for example, mesoscale eddies, which are in the order to tens
to a hundred kilometers in size, are not resolved. Sub-grid scale fluxes are typically parameterized as a
diffusive process

u ' C '=−K C
∂C
∂ x

, (5.33)

which is proportional to the large scale gradient in C, where KC is the diffusivity. (If C is velocity KC =n
is called viscosity). 
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Figure  5.11:  Clausius-Clapeyron  relation.
Saturation  specific  humidity  for  air  as  a
function of temperature at 105  Pa atmospheric
pressure.



Consider  two adjacent  grid cells  with concentrations  Cm and
Cm+1 and, for simplicity no mean flow. If a sub-grid scale eddy
transports fluid in the upper portion of the cell to the left and in
the  lower  portion  of  the  cell  to  the  right  with  the  same
fluctuation velocity u', then the flux into cell m will be ~ u'ΔC,
where ΔC=Cm+1-Cm. These sub-grid scale fluctuations will lead
to down-gradient tracer flux consistent with equation 5.33. We
would expect the diffusivities KC~u'Δx to be proportional to the
velocity fluctuations and the grid spacing.

Mixing along density surfaces (isopycnals) is more vigorous than across them, because it does not
require energy input, whereas energy input is needed to mix across isopycnals. In modern ocean GCMs
the  diffusivity  is  therefore  calculated  separately  for  the  along isopycnal  directions  and  the  across
isopycnal (diapycnal) direction based on the work by Gent and McWilliams (1990). Because density
surfaces  are  mostly not  equal  to  depth surfaces  a  diffusivity  tensor  is  calculated.  Along isopycnal
diffusivities are typically on the order of 1000 m2/s whereas diapycnal diffusivities are around 10-5 - 10-

4 m2/s. Diapycnal mixing may be caused by breaking of internal waves. Internal waves are waves in the
ocean interior, in contrast to surface waves. Tidal flow over rough topography is one source for internal
waves. Some waves break close to the generation sites, whereas other propagate away, which leads to
mixing elsewhere. Mixing parameterizations considering the local generation and breaking of internal
waves generated by tidal motions based on recent work by Simmons et al. (2004) and others are used in
some ocean GCMs.
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Initially diffusivities in ocean models were constant. However, the velocity fluctuations are unlikely to
be constant. Mesoscale eddy activity in the real ocean and in eddy-resolving models is not uniform but
higher in certain regions, such as the Southern Ocean or the western boundary currents, and lower
elsewhere.  New  and  innovative  approaches  have  been  taken  recently  to  account  for  the  spatial
distribution of mesoscale eddies. By solving for an additional equation for the eddy kinetic energy EKE
it is possible for coarse-resolution models to reproduce the spatial variability of the mesoscale eddy
field and its effect on sub-grid scale mixing (Figure 5.12). 

Atmospheric models resolve the large scale baroclinic eddies that are associated with the high and low
pressure  systems  and  the  daily  fluctuations  of  weather.  That  is  because  the  Rossby  radius  of
deformation is much larger for the atmosphere than for the ocean. Thus fluxes associated with these
transient eddies are resolved in global atmospheric GCMs, whereas they have to be parameterized in
ocean  GCMs.  In  atmospheric  GCMs  processes  such  as  convection,  clouds  and  precipitation  are
important  at  sub-grid  scales  and  need  to  be  parameterized.  See  the  textbook  by  Washington  and
Parkinson (2005) for a description of those parameterizations.

Eden, C. and R. J. Greatbatch (2007) Towards a Mesoscale Eddy Closure, Ocean Modeling XX, YY-ZZ. 

Gent P. G. and McWilliams, J. C. (1990) Isopycnal Mixing in Ocean Circulation Models,  J. Phys.
Oceanogr. 20, 150-155.

Simmons, H. L., Jayne, S. R., St. Laurent, L. C. and Weaver, A. C. (2004) Tidally driven mixing in a
numerical model of the ocean general circulation, Ocean Modeling 6, 245-263.
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Figure 5.12: Logarithm of eddy kinetic energy calculated in a coarse resolution model (a) and from
an eddy-resolving model (b) at 300 m depth in log10(EKE/[cm2s-2]). From Eden and Greatbatch (2007).



 5.4 Non-linear Dynamics and Deterministic Chaos

The primitive equations are a set of non-linear coupled differential equations. Non-linear terms are e.g.
in  the  advection  terms,  where  products  of  velocities  with  gradients  of  velocities  or  gradients  of
temperature or moisture occur. One consequence of these non-linear terms is that perturbations can
grow and small differences in initial conditions can lead to large differences in the state of the system

after some time.

The 1963 publication of the seminal
paper  “Deterministic  Nonperiodic
Flow”  by  Edward  N.  Lorenz
originated a new branch of science:
chaos  theory.  Lorenz  studied  an
approximation of the basic equations
of  convection  in  a  2-dimensional
incompressible,  viscous  fluid  in  a
non-rotating reference frame derived
by  Barry  Saltzman.  A  vertical
overturning  cell  and  a  background
constant  vertical  temperature
gradient  is  assumed  as  depicted  in
Figure 5.13. The basic equations are
the  incompressible  version  of  the
mass conservation equation

∂ v
∂ y

∂w
∂ z

=0 , (5.34)

the equations for horizontal and vertical momentum

D v
D t

=− 1
0

∂ p
∂ y

∇2 v (5.35)

D w
D t

=− 1
ρ0

∂ p
∂ z

+μ∇ 2 w− g
ρ0

ρ̃ , (5.36)

where  is a viscosity,  is a small deviation from the constant density 0 , and 

D
D t

= ∂
∂ t
v ∂

∂ y
w ∂

∂ z
denotes the (Lagrangian) rate of change moving with the fluid. 

Introducing the streamfunction

v=−
∂
∂ z

, w=
∂
∂ y

(5.37)

and the vorticity

=∂w
∂ y

−∂ v
∂ z

=∇ 2 (5.38)

the equation for the vorticity is derived by cross differentiating eqs. (5.35) and (5.36)
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Figure  5.13:  Schematic  of  the  Lorenz-Saltzman  model.  A
circulation in the 2-dimensional y-z plane forced by a constant
vertical temperature gradient (red line) is assumed.
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D
D t

=∇ 2− g
0

∂ 
∂ y

. (5.39)

With the definition of the expansion coefficient =− 1
0

∂ 
∂

the vorticity equation

D
D t

=∇ 2g 
∂
∂ y

(5.40)

reveals that vorticity is produced by buoyancy forcing and destroyed by viscosity. Now we assume that
the temperature distribution 

=0−
 T
H

z  y , z , t   (5.41)

is  a  small  deviation   from a  constant  vertical  gradient.  Energy  conservation  allows for  some
diffusion

DΘ
Dt

=κ∇ 2Θ . (5.42)

Inserting equation (5.41) in (5.42) and using the definition of the streamfunction (5.37) yields 

∂ 
∂ t

−
∂
∂ z

∂ 
∂ y


∂
∂ y

∂ 
∂ z

=∇ 2 
 T
H

∂
∂ y

. (5.43)

From the vorticity equation (5.40) together with (5.37) and (5.38) we get 

∂
∂ t

∇ 2−
∂
∂ z

∂
∂ y

∇ 2
∂
∂ y

∂
∂ z

∇ 2=∇ 4g 
∂
∂ y

. (5.44)

Equations (5.43) and (5.44) are a coupled, non-linear system of partial  differential  equations.  With
appropriate  boundary  conditions  those  can  be  solved.  The  following  Fourier  expansion  of  the
streamfunction and temperature deviation satisfies the boundary conditions of zero streamfunction and
no horizontal gradient at y=0 and y=H/a and =0 at z=0 and z=H:

  y , z , t =X  t sin 
 ay

H
sin 

 z
H
...  (5.45)

 y , z , t =Y  t cos 
 ay

H
sin 

 z
H
−Z  t sin

2 z
H

... .  (5.46)

This choice allows solutions with the simplest possible spatial structure. But eqs. (5.45) and (5.46) are
approximations because they neglect higher order terms in the Fourier expansion. Inserting equations
(5.45)  and  (5.46)  in  equations  (5.43)  and  (5.44),  and  introducing  a  dimensionless  time
=/H 2 1a2 t it  can  be  shown  that  the  following  set  of  ordinary  differential  equations

emerges

dX
dt
=− XY (5.47)

dY
dt
=−XZrX−Y (5.48)
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dZ
dt
=XY−bZ , (5.49)

where  = / is  the  Prandtl  number,  r=Rc
−1 Ra=g H 3 T a2 −1−1−4 1a2−3 ,  and

b=41a2−1 .  In  these  equations  X is  proportional  to  the  convective  motion,  while  Y is
proportional  to  the  temperature  difference  between  ascending  and  descending  currents,  and  Z is
proportional to the distortion of the vertical temperature profile from linearity. 

You'll see in your homework that the trajectory of the above system for a certain parameter range orbit
along a bounded region of the three-dimensional space known as a chaotic attractor. It never returns to
its initial state or any of its previous states, i.e. it is non-periodic. Small differences in initial conditions
will eventually lead to a completely different state. This is the reason why the predictability of weather
is limited to a few days.  

In classical physics it was thought that given the initial state of the system, call of its future states can
be calculated. As Pierre Simon Laplace put it, “An intelligence which could comprehend all the forces
by which nature is animated and the respective situation of the beings who compose it – an intelligence
sufficiently vast to submit these data to analysis … for it, nothing would be uncertain and the future, as
the past, would be present to its eyes.” Lorenz has shown that deterministic predictability is an illusion
because we can never know the exact initial conditions of a system. He has discovered “deterministic
chaos” and initiated a new field of science: chaos theory.
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 6 Ocean 

 6.1 A Simple Box Model of the Thermohaline Circulation 

Henry Stommel (1961) noted differences in air-sea interactions between temperature and salinity and
explored  the  effect  on  ocean  circulation  in  a  simple  2  box  model.  The  density  of  sea  water  is
determined by both temperature and salinity such that cooler temperatures and higher salinities lead to
heavier densities. Whereas surface salinity is influenced by evaporation (E) and precipitation (P), it
does not, in itself, influence the surface fresh water fluxes (E-P). The temperature of the ocean surface
is modulated by atmospheric heat fluxes, but it does also influences those heat fluxes, because both
sensible  and  latent  heat  fluxes  depend  on  the  temperature  difference  between  the  ocean  and  the
atmosphere. Thus there is a fundamental difference between the coupling of sea surface temperatures to
the  atmosphere  (which  is  two way)  and the  coupling  of  sea  surface  salinity  (which  is  one  way).
Stommel use a simple idealistic thought experiment to illustrate the is effect.  He the assumed two
vessels, each well mixed as indicated by the stirrers in figure (6.1).

The temperature T and salinity S of each vessel is controlled through a porous wall which is connected
to another (infinite) container with constant temperature and salinity. Stommel was interested in the
case in which the transfer of temperature through the wall is faster than the transfer of salinity. This
represents strong coupling between surface ocean and atmospheric temperatures and weak influence of
salinity on the fresh water flux. Here we assume that vessel 1 is kept at a lower temperature than vessel
2 with  T=T 1−T 20 and that the salt flux through the wall can be replaced by a constant surface
freshwater flux F out of vessel 2 and into vessel 1 as indicated by the blue arrows in Figure (6.1). 

The vessels are connected through a pipe (capillary) at the bottom and an overflow at the top. The
overflow ensures equal fluid levels in both vessels. The flow through the capillary is determined by the
density difference between the vessels. If the water in vessel 1 becomes denser than that in vessel 2 the
hydrostatic pressure at the bottom of vessel 1 will be greater than that in vessel 2 and a flow through
the capillary from vessel 1 to vessel 2 would result. At steady state this flow will be compensated by a
return of water across the overflow. 

The change in salinity with time in the two vessels is

∂ S 1

∂ t
=∣q∣S 2−S1−F (6.1)

∂ S 2

∂ t
=∣q∣S1−S2 F (6.2)

The flow will be proportional to the density difference 

q=c =c 1−2=c T S  (6.3)
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with c>0 a constant depending on the viscosity through the pipe, a<0 the thermal expansion coefficient
for sea water and  b>0 the haline contraction coefficient. Subtracting (6.2) from (6.1) gives

∂ S
∂ t

=−2∣q∣ S−2F . (6.4)

Thus at steady state the salinity difference  S 0=−F /∣q∣ is determined by the surface freshwater flux
such that the vessel experiencing evaporation will be saltier than the one experiencing precipitation.
But the difference will be reduced by the exchange flow between the vessels. 

For q>0 steady states are at

γ≡−
Δ S 0

τ
=1

2
∓√ 1

4
− F̃

τ2 , (6.5)

where τ=
α
β
ΔT>0  and F= F

c . A stability analysis analogous to subsection  2.2  shows that

the equilibrium is stable if  1/2 .  This stable equilibrium is shown as the upper solid line in
Figure (6.2). 

For q<0 steady states are easily found by replacing F by -F. 

=1
2
∓ 1

4

F
2 (6.6)
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Figure  6.1: Thermohaline
circulation  between  two
vessels  according  to
Stommel  (1961).The
original  model  by
Stommel has porous walls
with transfer of  heat  and
salt  from  an  infinite
outside reservoir. Here we
replace  the  salinity
transfer  through  the  wall
by  a  fixed  surface
freshwater  flux  F  (blue
arrows).
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The stability analysis shows that states are stable if  1/2 . Thus only the minus sign in (6.6) is

permitted and we also require  F0 . This part of the solution is shown as the lower solid line in
Figure (6.2). We realize that the system has two steady states for a certain range of the freshwater flux

0Fc2 T 2 /4 . At both thresholds of the freshwater flux abrupt changes from one branch of
the stable solution to the other are possible.

Stommel (1961) Thermohaline convection with two stable regimes of flow, Tellus 8.

 6.2 Ocean General Circulation
Models

The first ocean GCMs have been developed in
the 1960s (e.g. Bryan and Cox, 1967). Initially
ocean only models were forced by wind stress
and  restoring  (nudging)  temperature  and
salinity  at  the  surface  to  observed  values.
Restoring  boundary  conditions  (BCs)  for
salinity  were  later  replaced  by  fixed  salt  (or
freshwater) fluxes that could e.g. be determined
from an initial simulation with restoring BCs.
Models  with  these  so-called  “mixed  BCs”
exhibited different states for the same BCs and
parameters,  similar  to  Stommel's  box  model
(Fig. 6.3).

Today's models have a typical resolution of a
few  hundred  kilometers  and  20-40  vertical
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Figure  6.2: Equilibrium solutions for the Stommel model. The
stable branches of the solution are shown as the black heavy
lines. The dashed and dotted lines show unstable solutions.

Figure  6.3:  Hysteresis  behavior  of  the  Atlantic
meridional  overturning  circulation  (NADW)  in  an
ocean  general  circulation  model  forced  with
freshwater perturbation in the North Atlantic. From
Rahmstorf .



levels. They  simulate both the shallow wind-driven (Fig. 6.4) as well as the deep global overturning
circulation (Fig. 6.5). Most of the depth integrated flow, shown in Fig. (6.4), is due to the circulation in
the upper ocean featuring prominently the subtropical gyres in all ocean basins (red arrows in Fig. 6.4).
These gyres are driven by westerly (from the west) winds at mid latitudes and the easterly trade winds
at low latitudes. This leads to westward flow at low latitudes and eastward flow at mid latitudes. The
Gulf  Stream (northward  flow  in  the  Atlantic  along  the  east  coast  of  North  America),   Kuroshio
(northward flow in the Pacific along the east coast of Asia), and Humbolt Current (northward flow
along the west coast of South America) are part of the subtropical gyre. Ekman drift, which leads to
flow perpendicular  (toward the right/left  in  the  northern/southern  hemisphere)  to  the  wind,  causes
convergence and downwelling in the centers of the subtropical gyres and upwelling along the equator
and in the Southern Ocean (not all of these features are visible in the Figures). Subpolar gyres (light
blue arrows in Fig.  6.4) are simulated in the North Atlantic (counter clockwise) and Southern Ocean
(Weddell  and  Ross  Seas).  The  strongest  current  in  the  world  ocean  (~100  Sv)  is  the  Antarctic
Circumpolar Current (ACC) flowing eastward around Antarctica (blue arrows in Fig. 6.4). 

Sinking of surface waters to the deep ocean at high latitudes and upwelling at low latitudes and in the
Southern Ocean are the main features of the deep meridional overturning circulation (Fig. 6.5). Surface
waters in the North Atlantic are dense because they are salty and cold, which causes them to sink and
flow south at mid-depths (2-3 km) along the west coast of the Americas (purple arrows in Fig.  6.5).
Eventually this North Atlantic Deep Water (NADW) flows into the Southern ocean, where it mixes
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Figure 6.4: Barotropic (depth integrated) ocean circulation simulated by the OSUVic
model  (Schmittner  et  al.  2011).  Contour  lines  of  the  streamfunction  in  Sv  show
clockwise (counter clockwise) flow for positive (negative=dashed) values.



with other water masses, some upwells to the surface and some flows into the Indian and Pacific oceans
as Circumpolar Deep Water (CDW, green arrow in Fig.  6.5). There some upwells to the surface and
returns to the North Atlantic via the Indonesian Throughflow (green arrow in Fig.  6.4) and Benguela
Current around the tip of South Africa (purple arrows in Fig. 6.4). 

All of these simulated features are realistic. However, due to the coarse resolution of the model narrow
features (such as western and eastern boundary currents) are not well represented. Mesoscale eddies are
not resolved in this nor in most other global ocean models and their effects are parameterized. Tides
and gravity waves are also typically not simulated in GCMs. Some models also consider geothermal
heat flux from the sea floor, which as been shown to intensify the meridional overturning circulation
(e.g. Hoffmann and Morales Maqueda, 2009).

We have  shown recently  that  the  observed  pattern  of  the  meridional  overturning  circulation  with
sinking in the North Atlantic but not in the North Pacific is due to the effect of mountains and ice sheets
on land on atmospheric water vapor transport (Fig.  6.6). The Atlantic is saltier than the Pacific even
though more rivers enter the Atlantic than the Pacific. But water vapor is transported in the atmosphere
from the Atlantic to the Pacific via trade winds blowing over the Panama isthmus. The ranges of the
Rocky Mountains in North America and Andes in South America limit the transport of water vapor via
the westerlies  from the Pacific  to the Atlantic.  Thus the configuration of mountains leads to more
evaporation and less rain and river runoff in the Atlantic compared to the Pacific.  This makes the
Atlantic  saltier  and promotes  deep water  formation  there,  whereas  the North  Pacific  is  very  fresh
surface waters are too buoyant to sink to great depths. If mountains and ice sheets are removed in the
model (yes, we made the world flat :-) no more deep water is formed in the North Atlantic, whereas
salinities in the North Pacific increase to the point that sinking takes place there.
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Figure  6.5:  Meridional  overturning  circulation  simulated  by  the  OSUVic  climate  model.
Streamfunction shown with isoline difference of 2 Sv. Solid (dashed) lines indicate clockwise (counter
clockwise) flow. The zero line is bold. From Schmittner et al. (2011). 



Bryan K., and Cox, M. D. (1967) Tellus 19, 55-80.

Hoffmann, M., and Morales Maqueda, M. A. (2009) Geophys. Res. Lett. 36, L03603.

Schmittner, A., Silva, T. A. M., Fraedrich, K., Kirk, E., and Lunkeit, F. (2011) J. Clim. 24, 2814-2829.

58

Figure  6.6: Meridional overturning circulation in a model without mountains and ice sheets.
From Schmittner et al. (2011).



 7 Cryosphere

 7.1 Sea Ice

Sea ice has two important effects (Figure 7.1). First, it insulates the ocean from the atmosphere. Heat
transfer between the surface ocean and the atmosphere is strongly reduced in the presence of sea ice.
Mass transfer is also blocked, such that air-sea gas and water exchange are strongly reduced. Second,
sea ice formation, transport and melting is associated with a buoyancy flux to the surface ocean. Sea ice
contains  very little  salinity  (typically about  5  permil  in  contrast  to sea water,  which has  about  30
permil). This is because the freezing point of water decreases as its salinity increases – yes, that's the
reason why we sprinkle salt on the road in winter. Thus during the freezing process only the freshwater
freezes leaving the salt behind, which collects in pockets of brain water with very high salinity. Those
pockets slowly melt their way down through the ice and eventually are released into the underlaying
sea  water.  Thus,  where  sea  ice freezes  the  ocean gets  saltier  and hence  heavier.  Wind and ocean

currents move the ice around such that it  typically melts  at  a different location than where it  was
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Figure  7.1:  Sea  ice  effects  on  ocean  and  atmosphere  in  the  Southern  Ocean.  Katabatic  winds
descending from the Antarctic ice sheet push sea ice offshore and create leads and polynyas where
new sea ice can form.  Formation of  sea ice is  associated with release of  brine water with high
salinities, thereby densifying the underlaying sea water. The cold and salty water sinks down on the
continental shelf and flows across the shelf-break, along the continental slope into the abyssal ocean
forming Antarctic Bottom Water. (from http://www.nsf.gov/pubs/1997/antpanel/5signif.htm)



formed. Melting leads to an input of freshwater
and hence buoyancy into the surface ocean. 

Wind driven sea ice motion is very important
for deep water formation in the Southern Ocean
(Figure 7.2). Sea ice formation near Antarctica
leads  to  salt  input  and  increases  Antarctic
Bottom  Water  (AABW)  formation.  The
westerly  winds  force  northward  Ekman
transport of sea ice and melting in the areas of
Antarctic  Intermediate  Water  (AAIW)
formation.  AAIW  is  relatively  fresh  in  part
because  of  the  associated  input  of  freshwater
from sea ice melting. 

The  penetration  of  anthropogenic  chemicals
such  as  chlorofluorocarbons  (CFCs)  can  be
used  to  monitor  deep water  formation.  CFCs
have been released into the atmosphere since
the beginning of the 20th century due to their
use in refrigerators and sprays. CFCs are now
no longer used in most countries because they
lead  to  ozone  destruction  in  the  stratosphere
creating  the  harmful  ozone  hole.  However,
their  penetration  into  the  deep  ocean  reveals
locations of deep water formation. 

Figure  (7.3)  shows  elevated  CFC
concentrations  observed near the sea floor  of
the  Ross  Sea  suggesting   AABW  formation
there.  The  model  with  wind  driven  sea  ice
reproduces  these  observations,  whereas  a
model  without  sea  ice  motion  produces  no
AABW  in  the  Ross  Sea  and  unrealistic
downwelling in the Drake Passage. 

Saenko, O. A., Schmittner, A. and Weaver, A. J.
(2002)  On the  Role  of  Wind-Driven  Sea  Ice
Motion  on  Ocean  Ventilation,  J.  Climate  32,
3376-3395.
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Figure  7.2: Effect of wind driven sea ice motion on
the meridional overturning circulation of the Southern
Ocean. The meridional overturning streamfunction is
shown  in  units  of  Sv (1Sv =  106m3/s).  Flow  is
clockwise  along  lines  of  positive  streamfuction  and
counterclockwise  along  negative  (shaded)  lines.
Along the continental margin of Antarctica a strong
cell associated with about 5 Sv of Antarctic Bottom
Water formation exists in the model with wind driven
sea ice motion (top), whereas this cell is much weaker
in  the  model  without  wind driven sea  ice  (bottom).
From Saenko et al., (2002).



Figure  7.3:  CFC
concentration along
an zonal  section in
the  Pacific  section
(top  right)  in  the
Southern  Ocean.
Top left: model with
wind driven sea ice.
Center  left:  model
without wind driven
sea ice. Bottom left:
observations  from
year  1992.  From
Saenko  et  al.
(2002). 

 7.2 Ice Sheet Models 

J. Oerlemans (1981) developed the following simple vertically-integrated model of a continental ice
sheet. 

 7.2.1 Perfectly plastic solution for an ice sheet on a flat base

Assumptions:

• flow is quasi-two dimensional

• normal stress deviations are small

• the surface slope (s<0.1) is small 

Ice flows because of shear forces, caused by gravity, lead to plastic
(irreversible) deformation of the ice. The balance of forces within the ice is one where the vertical
gradient of the shear stress is equal to the horizontal pressure gradient caused by the slope of the ice
sheet surface.

∂ xz

∂ z
= g s ⇒ xz= g H− z s , (7.1)

61

force

fixed



where H is the surface elevation. The stress at the base of the ice sheet will therefore be 

⇒b= gHs= gH
∂H
∂ x

=const.=0 . (7.2)

If the basal stress is horizontally constant we can integrate equation (7.2) to give 

1
2
∂H 2

∂ x
=
 0

 g ⇒H= 20

 g
x=  x . (7.3)

The ice sheet profile is parabolic. [3.5 m1/2<Λ<4 m1/2]

Because temperature decreases with height in the atmosphere higher parts of the ice sheet will have
colder temperatures and therefore more likely a net positive surface mass balance. Let's assume that the
surface mass balance increases (decreases) linear above (below) the equilibrium line HE:

B=a H−H E
. (7.4)

The equilibrium line is to a large degree controlled by
climate. In this case the total  mass balance (integrated
over the entire ice sheet) is positive when the mean ice
sheet height is above the equilibrium line 

H= 1
L
∫0

L
H dx= √2Λ

3
√ L>H E

 . (7.5)

Thus  an  ice  sheet  with  a  mean  hight  above  the
equilibrium line  tends  to  grow bigger,  whereas  an  ice
sheet with a mean height below HE tends to melt away.
Once the ice sheet has disappeared it will not grow again
until the equilibrium line goes below zero. This positive
feedback  between  ice  sheet  height  and  mass  balance

leads to  hysteresis behavior  and two equilibria (Figure  7.5).  A warming climate,  for example,  can
increase the equilibrium line latitude above the mean height of the ice sheet and induce its demise.
Subsequent cooling and lowering of the equilibrium line does not bring the ice sheet back until  HE

becomes negative.
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Figure 7.4: Ice sheet elevation H (equation 7.3) as a function of distance.
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Figure  7.5:  Schematic  hysteresis  behavior
of  ice  sheet  volume  as  a  function  of
equilibrium line altitude.
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Of the two main ice sheets on Earth today, the one on Greenland is much closer to the threshold and
therefore more sensitive to climate change, than the Antarctic ice sheet. The Antarctic ice sheet is very
tall and located further poleward than the Greenland ice sheet. The equilibrium line for the Antarctic ice
sheet is negative, that is, there is almost no mass loss due to surface melt. It looses most of its mass
through calving  of  glaciers  into the  ocean.  Therefore it  has  a  much larger  difference  between the
equilibrium line altitude and its mean height and is less vulnerable to climate change compared to the
Greenland  ice  sheet,  which  is  less  tall  and  who's  equilibrium  line  is  closer  to  the  mean  height.
Greenland looses a considerable amount of mass through surface melting. Indeed the observed increase
of the surface melt area of the Greenland ice sheet in recent years is a matter of great concern with
important implications for sea level rise. Greenland stores water equivalent of 7 m global sea level.
Antarctica is good for about 70 m sea level rise.

Of course the positive height – mass balance feedback works also for cooling. If there is no ice sheet
and the equilibrium line dips below zero an ice sheet will start to grow. As it grows its surface will be
higher and higher in the atmosphere, where it will be colder and colder. Thus, the ice sheet creates its
own climate that will favor its existence even if the equilibrium line rises again to positive values.

Oerlemans  considered
the  glaciation  of  the
northern  hemisphere
assuming  a  north-south
transect  from the  Arctic
southward  over  the
continent  (North
America).  Considering
that  climate  is  warmer
further south he assumed

the equilibrium line would rise towards the south. He called the latitude where it intersects the surface
(z=0) the climate point (xP). During an interglacial the climate point would be in the Arctic and no ice
could form on the continent. As Earths orbital configurations changed the climate point would move
onto the continent and an ice sheet starts to grow. It will grow south until a large enough ice sheet area
is below the equilibrium line and accumulation balances melting. If the climate point moves back into
the Arctic the ice sheet still exists until a threshold is exceeded after which it collapses.

He assumed that the mass balance is linear with respect to height

B=α(x− xP)+βH , (7.6)

where α<0. The slope of the equilibrium line is given by Θ=−α/β . Since according to eq. (7.5)
the mean ice sheet height depends uniquely on its size  L we can easily integrate eq. (7.6) over the
whole ice sheet. At equilibrium this integral must be zero. Since the northern part of the ice sheet will
loose mass due to calving of ice bergs into the Arctic and there is no ice flow across the center of the
sheet, it will be sufficient to integrate only over the southern half of the ice sheet, which yields

B̄(L)= 2
L
∫L /2

L
Bdx=B1+B2 L1 /2+B3 L=0 , (7.7)

where  B1=−α x P ,  B2=√2βΛ/3 , and  B3=3α/4 . Substituting  λ=L1 /2  the quadratic eq.
(7.7) can be solved. The equilibrium is stable if ∂ B̄ /∂ L<0 and unstable if ∂ B̄ /∂ L>0 . Fig. (7.6)
shows that for  xP=0 there are two equilibria one with and one without an ice sheet. The ice sheet is
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larger the smaller the slope of the equilibrium line. If  xP<0, three equilibria emerge (7.7) one without
ice, one small and one large ice sheet. The small ice sheet solution is unstable as indicated by the
dashed lines. This implies hysteresis behavior for variations in the climate point. If the climate point is
negative and no ice sheet is present and the climate point moves across zero an ice sheet will grow
quickly to a finite size. If the climate point moves back north again the ice sheet decreases in size but
remains stable until a threshold is passed at which point the remaining ice sheet will collapse.
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7.2.2 Bedrock adjustment

Large  ice sheets  can be  3-4 km thick.  The weight  of  such an  ice  sheet  is  enough to  depress  the
lithosphere below. The continental  crust  floats  on the  upper  mantel,  which is  partially melted and
deformable (it flows very slowly). Thus the bedrock is not static but it sinks slowly in response to the
weight of a large ice sheet. The bedrock adjustment can be included in ice sheet models by solving the
following equation

∂h
∂ t

=
(ρi/ρB)H−h

τB

, (7.8)

where h is the bedrock depression, H= Hh  is the ice sheet
thickness  and  H  is  the  ice  sheet  elevation  above  the
undisturbed bedrock. The time scale tB ~ 3-5 ka is the response
time of the bedrock and the ratio of the densities of ice and
bedrock  is  ρi /ρB≃1/4−1/3  .  Fig.  (7.8)  shows  that

accounting for bedrock adjustment can change not only the time dependent behavior of the ice sheet,
but  also  its  equilibria.  Starting  from a  situation  without  ice,  the  climate  point  is  moved over  the
continent,  which  leads  to  ice  sheet  growth.  Without  bedrock  adjustment  the  subsequent  warming
(movement of the climate point into the Arctic) does not lead to a melting of the ice sheet because it is
sufficiently high to maintain a stable steady state. However, if the bedrock is allowed to adjust the ice
sheet will melt since its surface is lower than in the case with a fixed bedrock.
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Figure  7.6:  Mass balance  B̄(L) of  the
southern  half  of  a  perfectly  plastic  ice
sheet  for three values of  the slope of the
equilibrium  line.  xP=0.  From  Oerlemans
(1981).

Figure  7.7:  Solution  diagram  for  Northern
Hemisphere  ice  sheets  according  to  perfect-
plasticity theory. From Oerlemans (1981).



 7.2.3 A numerical model using Glen's law

Oerlemans  compared  solutions  of  the  perfectly  plastic
model with a more realistic one based on Glenn's law for
the  relationship  between  vertical  velocity  gradient  and
sheer stress

∂H
∂ t

=∇⃗ M⃗+B ,

(7.9)

where B is the surface mass balance and

M=A H m1∣∇ H m−1∣ ∇ H
(7.10)

is the vertically integrated mass flow, which follows from
Glen's  law  for  the  relation  between  vertical  shear  and
stress u=C τb

m with m=3 and equation (7.2). With this
we can rewrite equation (7.9) as

∂H
∂ t

=∇⃗ (D ∇⃗ H̃ )+B ,

(7.11)

with the diffusivity

D=A H m+1[( ∂ H̃
∂ x )

2

+(∂ H̃
∂ y )

2]
(m−1)/2

.

(7.12)

You will be able to write fortran code and simulate an ice
sheet using these equations and the numerical techniques
you already know from solving the diffusion equation.

Oerlemans, J. (1981) Some experiments with a vertically-
integrated ice sheet model, Tellus 33, 1-11.
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Figure 7.8: Model experiments on the effect
of bedrock sinking. The upper curve shows
the  prescribed  movement  of  the  climate
point.  The  other  curves  show  the
corresponding  evolution  of  a  Northern
Hemisphere ice sheet, for different values of
the  e-folding  time  scale  for  isostatic
adjustment τB . From Oerlemans (1981).



 8 Biosphere

 8.1 Daisyworld: Idealized Interactions between Vegetation and Climate

Watson and Lovelock (1983) explored vegetation climate interactions
on  an  imaginative  planet  they  called  daisyworld.  Daisyworld  is
covered by two kinds of daisies, black and white. As typical for plant
species  on  Earth,  their  growth  is  controlled  by  temperature.  (Plant
growth on Earth is limited by other factors as well, most importantly
water,  but  this  was  not  considered  by  Watson  and  Lovelock.)  At
temperatures too cold or too warm they cannot grow but for a range
surrounding an optimal temperature they do (Fig. 8.1).

The possibility  of  daisies
to grow and influence the
albedo  in  a  zero-
dimensional  energy
balance  model   leads  to
self-regulation
(homeostasis)  of  its
temperature (Fig.  8.2). As
e.g.  solar  luminosity  is
increased from low values
and  rising  temperatures
start  to  allow  growth  of
daisies,  black  daisies
appear  first,  since  they
absorb more sunlight and
increase  temperatures.  As
the  luminosity  increases
further  white  daisies  also
show  up  and  start  to
occupy  more  and  more
area,  which  stabilizes
temperatures  despite  the
luminosity increase. 

Lovelock  hypothesized  that  Earth,  including  its  biology,  is  a  self  regulating  organism  (Gaia
hypothesis).

 8.2 State-of-the-Science Dynamic Global Vegetation Models

Dynamic Global Vegetation Models (DGVMs) include different plant functional types (PFTs), such as
broadleaf and needleleaf trees, C3 and C4 grasses and shrubs, that compete with each other. Climate
conditions, such as temperature,  precipitation and solar irradiance,  determine the PFT composition.
DVGMs include biogeochemistry and calculate photosynthesis, respiration, leaf litter fall, vegetation
and soil carbon as well as soil moisture, transpiration and physical processes such as soil temperature.
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Figure  8.2:  As  the  solar  luminosity  in  daisy  world  increases  the
presence of daisies stabilizes  the temperatures (solid) compared to a
case  without  daisies  (dotted  line;  fixed  albedo).  From  Watson  and
Lovelock (1983).

Figure  8.1:  Growth  rate  as  a
function of temperature.  From
http://cobweb.cs.uga.edu/~cs1
210/Lectures/GlobalWarming/
Gaia.html



The resulting vegetation distribution and properties impact the physical climate through surface albedo,
roughness,  and the  hydrological  cycle.  Earth  System Models,  which  include  DGVMs,  are  able  to
consider changes in land carbon on atmospheric CO

2
 concentrations and thus climate.

 8.3 Ocean Ecosystem and Carbon Cycle Models

Biogeochemical  processes  in  the
ocean are governed by some of the
same  principles  as  on  land.
Photosynthesis  converts  inorganic
carbon  and  nutrients  into  organic
matter  a  process  that  produces
oxygen,  whereas  whereas
heterotrophic  bacteria  oxydize
organic  matter  back  to  inorganic
forms,  a  process  that  consumes
oxygen.  However,  there  are  also
important differences.  Whereas on
land leaves fall to the ground and
nutrients  and  carbon  is  readily
available for the next growth cycle,
the sinking of organic matter to the
deep  sea  makes  nutrients  at  the
surface scarce. 

The  light-filled  upper  ocean,  the
euphotic  zone,  where
photosynthesis  can  take  place  is
only  about  120  m  deep.  The
constant removal of nutrients from
the  euphotic  zone  by  sinking  of
particulate  organic  matter  (POM)
would  deplete  the  surface  ocean

quickly of all nutrients. However, upwelling and
mixing of surface and subsurface waters brings
back nutrients  to the euphotic  zone where they
fuel plankton growth. Still, as a consequence of
the  sinking  and  remineralization  of  organic
matter,  global  average  surface  nutrient
concentrations are much smaller near the surface
than  at  depths  (Figure  8.4).  In  fact,  in  many
regions  of  the  surface  oceans,  such  as  the
subtropical  gyres,  nutrient  concentrations  are
below  the  detection  limit  for  measurements
(Figure  8.5). Surface nutrient concentrations are
relatively  large  along  the  equator  and  eastern
boundaries, where upwelling occurs and at high
latitudes,  where  deep mixing occurs  and where
light is limited in winter. 
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Figure  8.3:  Schematic  of  ocean  carbon,  nutrient  and  oxygen
cycles.

Figure  8.4:  Global  average  phosphate
concentrations as a function of depth (m).



Due  to  the  consumption  of
dissolved  oxygen  during  the
remineralization of organic  matter,
oxygen  concentrations  decrease
with depth. Air-sea gas exchange of
dissolved  oxygen  is  fast  (months)
such  that  the  surface  ocean  is
always  close  to  the  temperature
dependent saturation concentration.
(Cold  water  can  hold  more
dissolved  oxygen  gas  than  warm
water.)  In  fact  in  regions  where
significant  photosynthesis  takes
place  surface  concentrations  are
slightly  supersaturated  due  to
oxygen  production  by
phytoplankton. The deviation of the
dissolved oxygen concentration from the saturation concentration, called Apparent Oxygen Utilization
(AOU), is a measure of the total amount of organic matter oxidation of a water parcel since it has left
the surface. Oxygen concentrations are low (AOU is high) in waters that have been isolated from the
surface for a long time and in which lots of organic matter has remineralized such as the subsurface
waters in the North Pacific (Figure 8.6). In some parts of the ocean oxygen concentrations can become
close to zero (hypoxic), which can be lethal for many animals such as fish, crab or starfish. Oxygen
concentrations are high in waters that have recently been at the surface such as North Atlantic Deep
Water.

Air sea gas exchange of carbon depends on the difference in partial  pressures between the surface
ocean mixed layer and the atmosphere:

q=−K ∣v∣,T , S [ pCO2atm− pCO2ml] . The partial pressure of CO2 in the mixed layer depends on
the aquatic CO2 concentration and the temperature (and salinity) dependent solubility a:
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Figure  8.5:  Phosphate  concentrations  (mmol/m3)  of  surface
waters. 

Figure 8.6: Zonally averaged dissolved oxygen concentrations.



 pCO2 ml=
[CO2 ]

ml

T , S 
.

CO2 reacts with sea water and forms carbonic acid, bicarbonate (HCO3) and carbonate (CO3) ions:

CO 2H 2 O⇔ HCO3
 -H  + (8.1)

HCO3
 -⇔CO3

2-H  + .

Total  carbon,  or  dissolved  inorganic
carbon  (DIC),  is  the  sum  of  all  three
species:

DIC=[HCO3
 -][CO3

2-][CO2] ,
where aquatic  CO2 is  only a  small  part
(1%). 

The  sinking  of  biogenic  matter  is
associated  with  the  sinking  of  carbon.
This is  called the biological  pump.  The
biological pump is responsible for about
2/3 of the surface to deep ocean gradient
in  dissolved  inorganic  carbon  (DIC,
Figure  8.7). The other 1/3 of the surface
to  deep  ocean  gradient  is  due  to  the
increased  solubility  of  CO2 in  cold
waters, the so-called solubility pump. 

It is useful to distinguish between the “soft tissue” pump, which is due to the sinking of particulate
organic matter and the “hard tissue” pump, which is associated with the sinking of calcium carbonate
(inorganic carbon). The chemical reaction equations (8.1)  can be re-written in terms of (temperature
dependent) equilibrium dissociation constants K1 and K2:

[H  + ][HCO3
 -]=K1 [CO2]

ml

[H  + ][CO 3
 2-]=K 2[HCO3

 -]

from which we can calculate the concentration of aquatic CO2:

[CO 2]
ml=

K 2 [HCO3
 -]2

K 1 [CO3
 2-]

.

Production of calcium carbonate removes carbonate ions (CO3) thereby increasing CO2. Thus, whereas
the  production of  organic  matter  reduces  surface  ocean CO2 and hence atmospheric  CO2,  calcium
carbonate  production  increases  surface
ocean  and  atmospheric  CO2.  Calcium
carbonate  is  produced  mainly  by
coccolithophorids  (phytoplankton),
foraminifera  (zooplankton),  pteropods
(zooplankton)  and  corals.
Coccolithophorids  and  foraminifera
produce  the  mineral  form  of  calcite,
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Figure  8.7: Globally averaged DIC concentrations as a
function of depth.

Figure 8.8: Global average alkalinity profile.



whereas  pteropods  and  corals  produce  aragonite.  Calcite  and  aragonite  have  slightly  different
properties, e.g. with respect to the dependence of saturation values on pH.

In addition to DIC ocean carbon cycle models must keep track of the charges, which is done by solving
an equation for alkalinity (ALK): 

ALK=[HCO3
 -]2 [CO3

 2-] .

Alkalinity is sensitive to the calcium carbonate pump. Calcium carbonate dissolves deeper (e-folding
depth of 3-4 km) in the water column than organic matter (e-folding depth of 0.3-0.4 km) as shown in
the deeper maximum (Figure 8.8) compared with nutrients and DIC. The export from the euphotic zone
of calcium carbonate pump is only about 10% of that of organic matter (Figure 8.9). In the model result
shown  in  Fig.  8.9 CaCO3 production  is  simulated  as  a  constant  fraction  of  (non-diazotrophic)
particulate  organic  carbon  (POC)  production  (red  arrows  in  Fig.  8.10).  Since  POC production  is
strongly  temperature dependent  (growth rates  of  phytoplankton and remineralization rates  increase
exponentially with temperature), more CaCO3 will be produced at low latitudes than at high latitudes.
POC export, however, depends strongly on nutrient input into the euphotic zone by the circulation and
not so much on temperature. Thus, the rain ratio (export of CaCO3 over export of POC) is also strongly
temperature dependent as indicated in Fig. 8.9.

Initial attempts to model the ocean carbon cycle, such as the Ocean Carbon Model Intercomparison
Project (OCMIP1) effort, were based on removing nutrients and carbon from the surface ocean and
sequestering them in the deep ocean, without consideration of specific  plankton functional  groups.
These  models  and  most  of  the  subsequent  more  complex  models  assume  constant  stoichiometric
composition (C:N:P:O2=106:16:1:-150 ratios) of the organic matter (see chapter 4 of Sarmiento and
Gruber, 2006), which is based on observations first described by A. C. Redfield in the 1960s. The value
for oxygen denotes the amount of dioxygen gas consumed per mole of organic matter (in Phosphorous
units)  remineralized.  Early  models  with  a  simple  food  web  consisting  of  one  nutrient,  one
phytoplankton, one zooplankton, and one detritus compartment (NPZD models) have recently been
extended to include more complexity. An example of a slightly more complex model with two plankton
functional  groups (nitrogen fixers and other phytoplankton)  and two limiting nutrients (nitrate  and
phosphate) one zooplankton group and a detritus compartment is shown in Figure 8.10. More advanced
models include more plankton functional types such as diatoms or coccolithophorids, different size
classes, and/or higher trophic levels such as mesozooplankton and fish.

Sarmiento and Gruber (2006) Ocean Biogeochemical Dynamics, Princeton University Press.
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Figure  8.9:  Ratio  of  CaCO3  versus  POC export  out  of  the
euphotic zone (across 120 m).

Figure  8.10:  Simple  model  of  ocean  ecosystem
dynamics.
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 13 Appendix: Time Series Analysis
Here basic  methods of  time series analysis,  used  in  the  chapter  on stochastic  climate  models,  are
reviewed.  The discussion and notation  below is  based on the book Statistical  Analysis  in  Climate
Research by von Stoch and Zwiers (1999, Cambridge University Press, ISBN 0 521 45071 3).
 13.1 Mean, Standard Deviation, Variance, Co-Variance and Correlation

The mean or average of a time series {x
1
, ..., x

T
}, with T number of data points is defined as

x= 1
T ∑t=1

T

xt .

It's  variance is

Var ( x)= 1
T ∑t=1

T

(x t−x)2=( xt−x)2

and its standard deviation is

σ x=√Var ( x) .

Relations between two time series {x
1
, ..., x

T
} and {y

1
, ..., y

T
} can be expressed as their co-variance

Cov (x)= 1
T ∑t=1

T

( xt−x)( yt− y)=(x t−x)( y t− y)

and correlation coefficient

ρxy=
1
T ∑t=1

T ( xt−x)( y t− y)
σ xσ y

, ρ∈[−1,1]



 13.2 Spectral Analysis

Each time series {x
1
, ..., x

T
} can be expanded into a Fourier series (assuming the number of data points

T is even):

x t=a0+∑
j=1

q

(a j cos(2πw j t )+b j sin(2πw j t )) , with frequencies w j=
j

T
and q=T

2
.

The Fourier coefficients are

a 0=
1
T ∑t=1

T

xt

a j=
2
T∑t=1

T

xt cos(2πw j t)

b j=
2
T ∑t=1

T

x t sin(2πw j t)

.

The base functions of the Fourier transform (sin, cos) are orthogonal to each other:

∑
t=1

T

cos(2πwk t )cos(2πwl t)=T
2
δkl , with Dirac's delta δkl {1, for k=l

0, for k≠l} .

∑
t=1

T

sin (2πwk t )sin (2πw l t )=
T
2
δkl

∑
t=1

T

sin (2πwk t )cos(2πw l t)=0 .

Definition: The auto-covariance function of x
t
 is:

γ(τ)=Cov (x t , xt+τ)

and ρ( τ)=
γ(τ)
γ(0)

is the auto-correlation function.

 13.3  The Spectrum

 Def.: The spectrum is the Fourier transform of the auto-covariance function:

Γ(w)=∑
τ=−∞

∞

γ( τ)e−2π i τw for all w∈[−1
2

, 1
2
]

Remember from complex numbers that eix=cos (x )+i sin (x ) .

Properties:

• Γ(−w)=Γ(w ) since γ(τ) is even function of τ : γ(−τ)=γ( τ)
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• Γ(w)=γ(0)+2∑
τ=1

∞

γ(τ)cos(2π τw)

• The spectrum describes the distribution of variance across time scales.
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