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[11 What is the uncertainty of climate—carbon cycle projections in response to
anthropogenic greenhouse gas emissions, and how can we reduce this uncertainty? We
address this question by quantifying the ability of available ocean tracer observations to
constrain the values of diapycnal diffusivity in the pelagic ocean (K,), a key uncertain
parameter representing sub-grid-scale diapycnal (vertical) mixing in physical circulation
models. We show that model versions with weak mixing (i.e., low K,) lead to higher
projections of atmospheric CO, and larger global warming than do models with vigorous
mixing. Slower heat uptake and slower carbon uptake by the oceans contribute about
equally to the accelerated warming in the low-mixing models. A Bayesian data-model
fusion method is developed to quantify the likelihood of different structural and
parametric model choices given an array of observed 20th century ocean tracer
distributions. These spatially resolved observations provide strong limits on the upper
value of K, whereas global metrics used in previous studies, such as the historical
evolution of global average surface air temperature, global ocean heat uptake, or
atmospheric CO, concentration, provide only poor constraints. We compare different
methods to quantify the probability of a particular diffusivity value given the
observational constraints. One-dimensional, globally horizontally averaged data result in
sharper probability density functions compared with the full 3-D fields. This perhaps
unexpected result opens up an avenue to objectively determine the optimal degree of
aggregation at which model predictions have skill, and at which observations are most
helpful in constraining model parameters. Our best estimate for K, in the pelagic
pycnocline is around 0.05-0.2 cm?/s, in agreement with earlier independent estimates
based on tracer dispersion experiments and turbulence microstructure measurements.
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1. Introduction

[2] Atmospheric CO, concentrations are rising faster than
ever since continuous monitoring began in 1959 [Canadell
et al., 2007]. Increasing anthropogenic carbon emissions is
the main cause of this accelerating growth, but reduced
uptake of atmospheric CO, by ocean [Le Quere et al., 2007]
and land are also hypothesized to play a role [Canadell et
al., 2007]. These observations are consistent with previous
coupled climate—carbon cycle model simulations that pre-
dict decreases in terrestrial and oceanic carbon uptake in the
future due to changes in climate [Cox et al., 2000; Dufresne
et al., 2002; Friedlingstein et al., 2006, Govindasamy et al.,
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2005; Jones et al., 2003; Joos et al., 1999, 2001; Matear
and Hirst, 1999; Matthews et al., 2005b; Sarmiento et al.,
1998; Zeng et al., 2004]. However, the Coupled Climate—
Carbon Cycle Model Intercomparison Project (C*MIP)
[Friedlingstein et al., 2006] shows a large range in the
projected magnitude of this feedback between different
models. Projected atmospheric CO, levels for emission
scenario SRES A2 at year 2100 range from ~700 ppmv to
~1000 ppmv, and up to 200 ppmv of this difference can be
attributed to differences in the climate—carbon cycle feed-
back [Friedlingstein et al., 2006]. Thus, the unknown mag-
nitude and uncertainty of the future climate—carbon cycle
feedback presents a major hindrance in the assessment of
the impacts of carbon emission scenarios.

[3] The reasons for the aforementioned model differences
are poorly understood. Although the C*MIP models showed
larger differences in land uptake (—6 to +10 GtC/a), there
were also considerable differences in ocean uptake (+4 to
+10 GtC/a) by the year 2100 [Friedlingstein et al., 2006].
Matthews et al. [2005a] show that differences in the param-
eterizations of the dependency of terrestrial vegetation
growth rates on ambient temperatures have a large effect on
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carbon uptake on land in future warming experiments,
suggesting that this might be a major contributor to the
uncertainty range observed in the C*MIP models. Even less
is known about reasons for the differences in ocean uptake,
although more simplified models (either in terms of physics
or biology) apparently show a larger sensitivity of carbon
uptake with respect to temperature changes than more com-
plex models [Friedlingstein et al., 2006]. A more detailed
comparison between two specific models attributes a two-
fold difference in oceanic carbon uptake (4 GtC/a in the
UK Hadley Center model versus 8 GtC/a in the French IPSL
model at 700 ppmv atmospheric CO,) due to increasing CO,
alone (without climate change) to differences in Southern
Ocean circulation [Friedlingstein et al., 2003].

[4] The models included in the C*MIP exercise are very
heterogeneous and range from box models to zonally aver-
aged and slab mixed layer ocean models to fully three-
dimensional coupled atmosphere-ocean general circulation
models (AOGCMs). These studies are mostly silent on the
question of how probable the different model structures are
given the available observational constraints. Without a
systematic and probabilistic comparison between observa-
tions and the C*MIP models, it remains unclear how to
interpret the range covered by the C*MIP models. A careful
probabilistic analysis of whether the models are consistent
with observations can provide important insights into this
question [Doney et al., 2004; Matsumoto et al., 2004].

[s] It is also likely that the C*MIP model simulations do
not cover the full scope of uncertainty in possible future
climate-carbon interactions, because of (for example) an
incomplete representation of the range of unconstrained
parameters. Recent Monte Carlo simulations with an atmo-
sphere model suggest that model parameter uncertainties
can increase the range of future climate projections consid-
erably [Murphy et al., 2004; Stainforth et al., 2005]. A key
uncertain parameter in ocean circulation models is the
diapycnal (vertical) diffusivity K,. The strong sensitivity
of the global deep overturning circulation to K, has been
known since the pioneering study by Bryan [1987]. Here we
investigate the uncertainty in ocean vertical mixing and its
effect on future projections of climate and CO,.

[6] Earlier studies show that tracer distributions in ocean
models are sensitive to changes in ocean circulation and
ventilation [Doney et al., 2004; England and Maier-Reimer,
2001; Gnanadesikan et al., 2004; Matsumoto et al., 2004],
but no attempt has been undertaken to quantify the proba-
bility of different model structures and parameters given
spatially resolved observations of ocean tracer distributions.
Probabilistic approaches to climate projections have only
been developed in recent years. These pioneering studies
were designed to estimate the probability density function
(PDF) of the climate sensitivity and used simple model
structures constrained only by globally aggregated observa-
tions such as the global mean surface air temperature evolu-
tion since 1850 [Andronova and Schlesinger, 2001], global
mean ocean heat content changes [Forest et al., 2002; Knutti
et al., 2003; Tomassini et al., 2007], atmospheric CO,
[Ricciuto et al., 2008], global carbon emissions [Jones et
al., 2006], or paleoclimate data [Annan et al., 2005;
Schneider von Deimling et al., 2006]. Tomassini et al.
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[2007] found a multimodal probability distribution for K,
and concluded that these globally averaged metrics do not
provide strong limits on the value of K. Here we show that
multiple physical, geochemical and biogeochemical obser-
vations with spatial resolution can provide much stronger
constraints on the diapycnal ocean diffusivity. The main goal
of this paper, however, is to develop and demonstrate a
Bayesian data-model fusion approach for spatially distributed
tracer observations that can be used to assess and reduce the
uncertainty of future climate projections.

2. Methods
2.1. Model

[7] The UVic Earth System Climate Model [Weaver et
al., 2001] of intermediate complexity, includes a coarse
resolution (1.8 x 3.6°, 19 vertical layers) three-dimensional
general circulation model of the ocean. It has state-of-the-art
physical parameterizations such as diffusive mixing along
and across isopycnals, eddy induced tracer advection [Gent
and McWilliams, 1990] and a scheme for the computation
of tidally induced diapycnal mixing over rough topography
[Simmons et al., 2004]. In order to account for other sources
of mixing, a globally constant background diffusivity K,
is added to the tidally induced diffusivity K, = Ky + Kpg. It
is unlikely that breaking of internal waves and other uncon-
sidered sources of mixing are spatially constant, but lacking
process based parameterizations, K, is assumed constant
within the current model context. It is this background
diffusivity K, that we vary in our sensitivity study, from
0.01 cm*/s to 0.5 cm?/s. The tidally induced diffusivity rapidly
decays in the water column above the seafloor with an
exponential depth scale of 500 m. This results in the back-
ground diffusivity determining the value of diapycnal mixing
in most parts of the pelagic pycnocline. Observations from
the Southern Ocean show that diapycnal mixing is much
larger than in other oceans [Naveira Garabato et al., 2004].
We account for these observations by limiting K, to >1 cm?/s
south of 40°S. Thus, the variations in K,, affect mixing
only in the open ocean north of 40°S.

[8] A simple one-layer atmospheric energy-moisture
balance model (EMBM) interactively calculates heat and
water fluxes to ocean, land and sea ice, while wind velocities
are prescribed from the NCAR/NCEP monthly climatology
in the momentum transfer to the ocean and to a dynamic-
thermodynamic sea ice model. The model does not use flux
corrections. The model of the terrestrial vegetation and
carbon cycle [Meissner et al., 2003] is based on the Hadley
Center model TRIFFID. The ocean biogeochemical model is
based on the nutrient, phytoplankton, zooplankton, detritus
(NPZD) ecosystem model of Schmittner et al. [2005b] and
includes a parameterization of fast nutrient recycling due to
microbial activity after Schartau and Oschlies [2003]. It
solves prognostic equations for two phytoplankton classes
(nitrogen fixers and other phytoplankton) as well as for
nitrate, phosphate, oxygen, dissolved inorganic carbon,
alkalinity, radiocarbon and chlorofluorocarbons as tracers.
The biogeochemical/carbon cycle model is described in
detail by Schmittner et al. [2008]. Biological uptake and
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release occurs in fixed elemental ratios of carbon, phosphate,
nitrate and oxygen. Calcium carbonate production is param-
eterized as a fixed ratio of the production of particulate
organic matter in the water column. Remineralization of
calcium carbonate is determined by instantaneous sinking
with an e-folding depth of 3500 m.

[9] The ensemble consists of eight models with K;, =
(0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5). (In the
following, for brevity, we omit the units of K,,, which are
in cm?/s.) Each model version is restarted from an 8000-year
control integration with K, = 0.15, and spun up for an
additional 3000—4000 years (longer for smaller K;,) using
constant preindustrial forcing until climate and carbon cycle
are in quasi-equilibrium. Initially atmospheric CO, is fixed at
280 ppmv, but for the last ~1000 years of the spin up it is
calculated interactively. Equilibrium is determined if changes
in atmospheric CO, are less than 5 ppmv per 1000 years,
so that at the end of the spin up atmospheric CO, is within
+5 ppmv of ice core measurements of its preindustrial value
of 280 ppmv (Figure 1) for all model versions. Subsequent
estimates [Crowley, 2000] of historical forcing from year
1800 to 1998 AD are applied, considering changes in solar
insolation, volcanic and anthropogenic aerosol and green-
house gases, followed by CO, emission scenario SRES A2
until 2100 and a linear decrease of emissions to zero from
year 2100 to 2300 (Figure 1). Solar, aerosol and non-CO,
greenhouse gas forcings have been held constant at 1988—
1998 levels for the future simulations.

2.2. Observations

[10] We calculate probability densities for nine three-
dimensional tracer distributions from two databases. Tem-
perature (T) [Locarnini et al., 2006], salinity (S) [Antonov et
al., 2006], phosphate (POy) [Garcia et al., 2006a], apparent
oxygen utilization (AOU) [Garcia et al., 2006b], and pre-
formed phosphate (P* = PO, — AOU/170) are taken from
the World Ocean Atlas 2005 (WOAOS5, data downloaded
from ftp.nodc.noaa.gov/pub/data.nodc/woa/WOAO05nc) and
radiocarbon (A'*C), chlorofluorocarbon 11 (CFCI11), dis-
solved inorganic carbon (DIC), and alkalinity (ALK) are
adopted from the Global Ocean Data Analysis Project
(GLODAP) [Key et al., 2004]. Both databases provide data
onal x 1° grid with 33 vertical levels. The observations are
averaged onto the 1.8 x 3.6° model grid with 19 vertical
levels. GLODAP data represent the 1990s and are compared
with the decadal model mean from 1990 to 2000, whereas
WOAO5 data represent the 1950—2000 and are compared to
the model mean during this period.

2.3. Observation Error Estimates

[11] To quantitatively compare observations to model
projections requires an estimate of the observation errors.
The error size determines how far from the data a model can
be and still remain consistent with the observations. Spatially
variable error estimates for the observations (o;) are avail-
able for A'™C, CFC, DIC and ALK from the GLODAP data
set representing errors resulting from the objective analysis
(mapping) procedure used to interpolate and extrapolate
observations to a global grid. Because of the sparse obser-
vations the GLODAP error estimates are horizontally corre-
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lated with a correlation length scale of 10—20°. Thus the
GLODAP errors are simply averaged onto the model grid.

[12] The WOAO5 provides the standard error for each
unanalyzed variable, which is the standard deviation of the
mean divided by the square root of the number of observa-
tions in each grid cell. Following the recommendation in the
WOAOS5 documentation (available at http://www.nodc.
noaa.gov/OC5/WOAO5/pr_woa05.html) the error due to
the objective analysis is estimated as the difference between
the value of the analyzed field and the mean at each grid cell
containing observations. For 7 and S, which have observa-
tions at almost all grid points, this error is horizontally
uncorrelated. The global horizontal root mean square is
calculated at each depth level, representing the (horizontally
uniform but vertically varying) mapping error. This mapping
error is added to the standard error to yield the spatially
variable total error estimate.

[13] For POy, preformed PO,, and AOU the data density
is too sparse to calculate an error estimate due to the
mapping procedure, because the calculation outlined above
can only be performed for points that include data. For this
reason we do not use the analyzed fields but rather we use
the unanalyzed mean (the average of the raw observations in
any given 1 x 1° data grid box). This limits the number of
grid cells to those containing observations. The observa-
tions are averaged onto the model grid, and model grid cells
without observations are discarded in the analysis. In this
case the total error of the observations is only the standard
error of the mean (no mapping error). For all WOAO5
variables the total errors are assumed to be horizontally
uncorrelated and are hence averaged onto the model grid
and divided by 2.55 = /3.6 x 1.8 in order to account for
6.48 independent data grid boxes in one model grid cell.

2.4. Statistical Analysis

[14] We assess the compatibility of different diapycnal
diffusivities with observed tracer measurements using
Bayesian inference to compute the relative probability of
each of the eight diffusivities in our ensemble implied by each
of the nine tracer fields. Two different methods are used in the
model assessment. The first computes the root mean squared
(RMS) error (E) for each model, including the full three-
dimensional (3-D) spatial fields of observations. This method
neglects the correlation of the errors and requires the size of
the errors to be specified. The second method considers the
correlation of the errors and determines the error magnitude
and bias endogeneously from the data-model residuals.
However, because of computational constraints it uses only
one-dimensional data (globally horizontally averaged depth
profiles). Both methods, as well as the relations between
them, are described in detail in sections 2.4.1 and 2.4.2.
2.4.1. Three-Dimensional Method

[15] Models that greatly differ from the observations are
judged less probable than models whose deviations from the
data are small. To quantify this intuition, it is necessary to
mathematically specify what “small” means. We introduce
an error estimate o to set the scale against which data-model
discrepancies are evaluated. These deviations are deemed
large or small relative to the magnitude of o. Observations
can differ from model predictions for two reasons: model
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Figure 1. Hindcasts and projections of (top) atmospheric CO, concentration and (bottom) near-surface
air temperature (SAT) anomalies from the 1960—1990 levels for model versions with different values
of K;,,. The emission scenario (SRES A2 until year 2100 and linear decrease until year 2300 afterward)
is shown as the heavy dotted line in Figure 1, top, with the scale in the bottom right corner ranging
from 0 to 30 Gt C/a. For reference: current 2007 levels are about 8.5 Gt C/a (J. G. Canadell et al., Carbon
budget and trends 2007, available from the Global Carbon Project, http://www.globalcarbonproject.org,
26 September 2008). The insets in the upper left region of each plot show a zoom into the hindcast
period (1800—2007) including CO, observations from Mauna Loa [Keeling and Whorf, 2005] and ice
cores [Neftel et al., 1994] (circles) and temperature observations from the HadCRUT3 [Brohan et al.,

2006] data set (black noisy line).

structural error, and observational/measurement error. The
quality of data-model agreement depends on how large we
judge these errors to be (see section 3.3.1). However, errors
can be difficult to estimate a priori (before seeing the

observational data), especially when model structural errors
are substantial. Observational errors usually can be estimated
from known properties of the measurement system
(section 2.3), but the size of the model error typically
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cannot be determined without comparing the model output
to observations.

[16] To assess model skill for each tracer i, we calculate
the error-weighted mean squared error

B (0—M> M)

o]

The overbar denotes the global, volume-weighted average.
Deviations of each modeled 3-D tracer field M; = M(x, y, z) =
M; + M’; from the observations O; = O(x, y, z) = O; + O/, are
weighted by a combined error estimate (a,-2 =05+ Jﬁﬁ) for
the observations op; and the model o,,. (The prime denotes
the deviation from the global mean.) Our methods for
estimating the observation and model errors are discussed in
section 3.3.1.

[17] The models often show bias relative to the observa-
tions, so that their mean prediction differs from the mean of
the observations. To distinguish between the amount of
error introduced by model bias and the amount of error
unrelated to bias, we also consider the bias-corrected RMS
error. This error is calculated by subtracting the global mean
bias b; = O; — M;, so that the bias-corrected residuals O; —
M; — b; have zero mean. The bias-corrected RMS error is

2 / N 2

then E? = <M> = <u> . The error E?
Oi Ji

excludes information about the global mean data-model

misfit.

[18] The probabilistic model assessment, however, includes
information on the global mean data-model misfit using
equation (1). Assuming the errors are independent and
identically distributed random variables, the probability
density

L(O;|Kpg) o exp(—%Ef) (2)

is the likelihood that the observations O; could arise from
the model with parameter K. Above, E? = E? x Nis the
(volume-weighted, error-weighted) sum of squared errors,
equal to the mean squared error E? times the number of data
points (N). More precisely, assuming a known error o, the
probability in equation (2) is a normal likelihood function:
the observations are assumed to be drawn from a normal
distribution with mean centered on the model output (O ~
N = M, o%)). Bayes’ theorem states that the posterior
probability density function (PDF) for K, is proportional to
the product of the likelihood of the observations with the
prior PDF of Kj,, p(Kp,):

p<Kbg|0i) x L(Oi‘Kbg) X p(Kbg)' (3)

The prior PDF quantifies expert judgment about the value of
K;, before having assimilated the observational data. We
adopt a uniform prior PDF for K, giving equal prior
probability to each model run. The posterior probability of a
particular model run is the product of how likely the data are
given the model output, weighted by how probable the run
is judged to be a priori. See Gelman et al. [2004] for a basic
reference text on Bayesian methods.
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[19] If the errors in different tracers are independent of
each other, which is generally not the case, as discussed in
section 3.3.5, likelihoods for individual tracers can be
multiplied to yield the combined likelihood of all tracers,
L(O|Kpg) = TIL(O;|K}g). Probability-weighted projections

for a climate variable T are obtained by averaging over the
possible values of K,

Kbgmax
T(Kbg) P (Kbg ‘ 0) deg7 (4)

Kbgmin

if the PDF is defined on the interval [Kpgin, Kpgmaxl-
2.4.2. One-Dimensional Method

[20] The above 3-D method ignores spatial autocorrela-
tion of the data-model residuals, R; = O; — M,, which is
known to lead to overconfident parameter estimates [Zellner
and Tiao, 1964]. In addition, the above formulation pre-
sumes that the residual error o is known, but as discussed in
section 2.4.1, it can be difficult to estimate a priori. Here we
develop a relatively simple and computationally efficient
method to estimate the combined effects of observation
errors and model structural errors endogenously from the
overall data-model misfit. This method is more computa-
tionally expensive than the 3-D method, so we apply it to
small 1-D aggregated data sets instead of to the full 3-D
spatial fields.

[21] When the errors are uncorrelated, only their magni-
tudes o, need to be specified. If the errors are correlated, the
correlation between errors must be specified in addition to
their magnitudes. We generalize from the error variances o7
to an error covariance matrix Y, which includes the error
variances and the spatial correlations between points. In the
3-D method we use the weighted sum of squared errors,
>(0; — M,~)2/o*,2, to quantify model skill. This error measure

is not appropriate when the errors are correlated. Correlated
errors effectively provide fewer independent data points
than uncorrelated errors. An appropriate measure should
penalize models less harshly when correlation is present,
since fewer independent data are assimilated. To include
correlation the sum of squared errors generalizes to a
quantity involving the error covariance matrix, known as
the Mahalanobis distance [Mahalanobis, 1936], which
appears in the multivariate normal distribution:

E} = (0; — M)"S;71(0; — M;). (5)

This expression reduces to the sum of squared errors when
the covariance matrix is diagonal with entries oiz, i.e., when
it contains only variances but no off-diagonal correlations.
(In the remainder of this section we omit the subscript i
when referring to each tracer.)

[22] Only small covariance matrices are used here because
matrix inversion is computationally expensive, growing
with the cube of the number of data points. To reduce the
size of the covariance matrix to a computationally feasible
magnitude, we consider only a 1-D globally averaged
spatial field of tracer data O(z) and M(z) as a function of
depth z. Each field is reduced to 18 data points (depths),
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allowing the assimilation to run for all tracers within a few
minutes on a single workstation. A small 2-D latitude-depth
grid may also be computationally feasible to assimilate in
this manner, but this exercise is beyond the scope of this
proof-of-concept study. We assume the covariance matrix
> is given by a stationary squared-exponential covariance
function between depths z; and z;, ¥ = o exp(—|z; — zi|”/
M%), where o° is the residual variance and \ is a range or
correlation length parameter. A squared-exponential co-
variance function implies a smooth (infinitely differentia-
ble) spatial process and is chosen because prior judgment,
as well as inspection of the residuals, suggests that the
globally averaged model structural error varies smoothly
with depth. Including the possibility of a constant model
bias, b, the observations are assumed to be drawn from a
multivariate normal likelihood centered on the bias-corrected
model output (O ~ MVN(u = M + b, Y)).

[23] In the previously discussed 3-D method, the residual
error o, the correlation length A, and the model bias b are
assumed known constants (with A = 0, and b = 0 or set to
the difference in observational and model means). These
constants may differ between tracers. In the 1-D method
applied here, we relax these assumptions by treating the
three constants as unknown statistical parameters. The full
Bayesian approach, which we approximate, is to calculate a
joint posterior PDF for all the uncertain parameters, includ-
ing the model parameter K, and the three statistical
parameters. By Bayes’ theorem, this posterior probability
is proportional to the product of the likelihood of the
observations with the prior probability of the parameters,

P(Kbg, 0, A, b|O) o< L(O|Kpg, 0, A, b) x p(Kpg,0,\,b).  (6)

We are most interested in the probabilities of the different
model diffusivities, not of the statistical parameters. We
can obtain the posterior PDF p(K,,|O) for K, alone by
integrating the joint posterior p(Kyg, 0, A, b|O), equation (6),
with respect to the three statistical parameters:

p(Kie|O) = / / / P (Kpg, 0, X, b|O)dod \db. (7)

However, for computational simplicity, we avoid perform-
ing this integral by fixing the statistical parameters at their
best fit values o*, A*, (* This gives an approximate
proportionality

* * *
P(KiglO) 'N‘p<Kbg\07a LD >
O<L<0|th70*,)\*,b*> Xp(Kbg,a*,)\*,b*>, (8)

Fixing the statistical parameters ignores their uncertainty
but still accounts for the presence of model error, bias, and
correlation. These quantities are estimated from the data-
model misfit instead of assumed from expert prior judgment.
The best estimate for o*, A\*, 3* is obtained by numerically
maximizing the posterior probability (equation (6)) using a
global optimization method [Storn and Price, 1997] to
account for potential multimodality. Posterior maximization
is analogous to maximum likelihood estimation [Lehimann
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and Casella, 2003], except that the likelihood is modified
by prior constraints on the parameters. The statistical
parameters are separately optimized for each tracer,
allowing the estimated residual structure to vary between
tracers. For every tracer, the parameters are also reoptimized
for each member of the ensemble. In other words, the
statistical parameters are allowed to depend on K, The
logic behind this assumption is that the model error depends
on the model parameters, since poorly fitting models should
have larger model error and bias. We linearly interpolate the
posterior probability onto a regular grid of K, and
normalize the integral to unity to arrive at a proper
probability density function.

[24] We choose a uniform prior for the model parameter
Kpe. The correlation length prior is p(\) = lognormal(5.5,
0.52). That is, In()\) is normally distributed with a mean 5.5
and standard deviation 0.5, which puts most of its proba-
bility mass between 0 and 600 m and practically excludes
larger correlation lengths. Large correlation lengths imply
strong communication between the surface and the deep
ocean, which is contrary to the layered nature and highly
stratified vertical structure of the ocean. We use a joint prior
for the residual variance and bias, p(b/c’) = N(0, 0.5%). This
prior is selected so the model bias for the best K, value is
assumed to be likely smaller than the residual error (i.e., b/o
is near zero). This gives low prior weight to models with
large biases, where “large” is quantified relative to the size
of the bias-corrected error, 0. Exploratory analysis indicates
that an improper, unbounded uniform prior for the range or
bias parameters can lead to ill-conditioned covariance matri-
ces and nonrobust results for the K, posterior distribution.

3. Results
3.1. Global Metrics

[25] Observed atmospheric CO, concentrations and
global mean surface air temperatures are simulated roughly
equally well in all model versions, irrespective of the value
of K, (Figure 1). This is also true for the ocean heat
content changes, which are very similar in all simulations
(Figure 2). As already concluded by Tomassini et al. [2007],
these globally aggregated observations provide relatively
poor constraints on Kj,. The model suggests, however, that
this situation might change in the future, because the
simulations for different K, values diverge notably during
the 21st century. For example, at year 2100 differences in
CO, concentrations are about 70 ppmv (Figure 1). This
suggests also that variations in diapycnal diffusivity alone
can account for about 25% of the range in the C*MIP
models. At year 2300 differences in CO, concentrations are
more than 200 ppmv. Differences in projected global
average surface air temperatures are 0.8°C in model year
2100 and 1°C in year 2300.

[26] A 1°C variance with respect to a 7°C global warming
might not seem significant compared to the much larger
variance in the C*MIP or IPCC AR4 model projections.
However, it is important to remember that the multimodel
spread is caused by numerous differences in model struc-
tures and parameter values, whereas here we have only
varied a single parameter.
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Ocean heat content changes, 0—700 m (1022 J)
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Figure 2. Upper ocean (0—700 m) heat content changes (from year 1961) as simulated by the different
model versions (lines) compared to observations (gray shading) from Domingues et al. [2008]. The dark
gray shading denotes 9-year running mean values for comparison with decadal averages plotted for the
model simulations. The light gray shading shows 3-year averages.

3.2. Influence of Diapycnal Mixing on
Climate—Carbon Cycle Projections

[27] Larger diapycnal mixing leads to faster oceanic
uptake of heat and CO, in the model. Both effects tend to
delay and reduce atmospheric warming. Faster CO, uptake
leads to lower atmospheric CO, concentrations and thus
reduced radiative forcing, whereas faster heat uptake leads
to slower warming of surface waters and therefore delayed
warming of surface air temperatures. We separate these two
effects by comparing a simulation with weak mixing (K, =
0.1) forced with interactive CO, to one forced with a
prescribed CO, evolution (and thus radiative forcing) taken
from a run with vigorous mixing (K, = 0.5). The difference
in surface air temperature evolution between these two
simulations is due only to the effect of slower ocean heat
uptake. The effect of different ocean carbon uptakes is
quantified by comparing the simulation with prescribed
CO, to the fully coupled run with Kz, = 0.1 (Figure 3).
The global surface air temperature increase in the run with
prescribed CO, evolution is about halfway between the
experiments with high and low Kj,. About 55% (0.5 K) of
the reduced warming of air temperatures in the high-K,,
versus the low-K}, simulation is explained by differences in
ocean heat uptake alone, and 45% is caused by faster CO,
uptake. This demonstrates that both effects, slower heat
uptake and slower carbon uptake, provide similar contribu-
tions to the reduced warming in the high-mixing model
projections.

[28] We analyze the sensitivity of land (AC;) and ocean
(ACp) carbon uptake until year 2100 with respect to
changes in atmospheric CO, (8, = AC7/ACY; Bo =
ACH/ACY) and climate (v, = (AC; — B ACH/ATS; vo =
(ACH — BoACYH/IAT) following Friedlingstein et al.
[2006], where ¢ and u superscripts denote the coupled and
uncoupled (constant climate) runs, respectively, AT is the
global mean surface air temperature change and AC is the
atmospheric CO, anomaly. As expected, the land sensitiv-
ities (B(Kpg = 0.1) = Br(Kpe = 0.5) = 1.4 GtC/ppm; v,(Kpe =
0.1) = =114 GtC/K; v.(Kpe = 0.5) = —116 GtC/K) are very
similar between the different K;,, simulations. (The Cc*MIP
range for 3; is 0.2 to 2.8 GtC/ppm and for ~; it is —20 to
—177 GtC/K.)

[20] However, ocean carbon uptake due to changes in
atmospheric CO, alone is 30% smaller in the low-mixing
model (Bo(Kpe = 0.1) = 1 CtC/ppm) compared to the high-
mixing model (8o(Kjp, = 0.5) = 1.4 CtC/ppm). This suggests
that differences in ocean diapycnal mixing alone can
explain half the range of 3¢ in the C*MIP models (0.8—
1.6 GtC/ppm) and reemphasizes the important role of
diapycnal mixing on anthropogenic carbon uptake by the
ocean. There are, of course, other processes that additionally
determine ocean carbon uptake (under fixed climate), such
as the strength of the overturning circulation and convec-
tion, mixed layer depths, and air-sea gas exchange (driven
by factors such as sea ice and wind velocities).
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ASAT(Kpg=0.1) =  ASAT(Kyg=0.5)
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Figure 3. Effects of reduced ocean heat and carbon uptake on projected warming resulting from smaller
vertical mixing. The solid line shows the global mean surface air temperature anomaly for a run with low
vertical mixing (K = 0.1) minus that from a run with high vertical mixing (K, = 0.5), including both
effects, reduced heat and reduced carbon uptake. The dashed line shows the effect of reduced heat uptake
alone from a sensitivity experiment with K, = 0.1 in which atmospheric CO, evolution is prescribed to
be identical to that from the K, = 0.5 simulation. The effect of reduced carbon uptake shows as the

difference between the dashed and solid lines.

[30] Ocean carbon uptake decreases in the model simu-
lations as climate warms because of increasing stratification
of the upper ocean. A greater weakening of the ocean
carbon sink corresponds to more negative values of 7,. In
the high-mixing models this decrease is larger (vo(Kpe =
0.5) = —45 GtC/K) than in the low-mixing models (7o(Kpg =
0.1) = =31 GtC/K). The C*MIP models range from —14 to
—67 GtC/K (though it is worth noting that the v, value of
—67 GtC/K is the result of a box model; the next largest
C*MIP model value of v, is —46 GtC/K). At year 2100 the
ocean takes up 4.8 GtC/a in the low-mixing model versus
6.2 GtC/a in the high-mixing model. Most (8 out of 11)
C*MIP models lay within that range of ocean carbon uptake.

[31] The strength of positive climate—carbon cycle feed-
backs can be quantified by the feedback gain (g=1 — ACY/
ACS = —alyL +vo)/(1 + B + Bo), where a = AT/ACY is
the transient climate sensitivity) [Friedlingstein et al.,
2006]. The effects of higher (5, and larger (negative) vo
almost completely compensate each other, but because of
the larger transient climate sensitivity (o (Kpe = 0.1) =
0.0060 K/ppm versus « (Kp, = 0.5) = 0.0055 K/ppm), there
is a modest (10%) increase in gain in the low-mixing model
(g(Kpg = 0.1) = 0.2) compared to the high-mixing model
(g(Kpg = 0.5) = 0.18). The range of g in the C*MIP models
is 0.04—-0.31, which includes differences in both terrestrial
and oceanic carbon cycle contributions to the total climate—
carbon cycle feedback, in addition to different values of
transient climate sensitivity. According to our analysis,
while different K;, values can explain a substantial portion

of the range of ocean carbon uptake between models, Ky,
differences can explain only a relatively small proportion of
the intermodel range in net climate—carbon cycle feedback
strength.

3.3. Model Assessment Using Spatially Resolved
Ocean Tracer Observations
3.3.1. Model and Observation Error Estimates

[32] Assessing model skill requires an estimate of the
discrepancy between observations and model predictions.
The 3-D method’s likelihood function, equation (2), assumes
that the standard deviation of the data-model residuals (o) is
known. The 1-D method estimates this error from the
residuals by an optimization procedure (section 2.4.2). For
the 3-D method we choose to determine the residual error
by more informal means. By definition, the residual error

;= 1/ O’ZOi + U%,ﬁ should be similar to the standard deviation
of the residuals, o; =~ SD(O; — M,). For the 3-D method we
choose the model error 0, such that this is the case for one
of the best fitting models (K, = 0.15). (See Table 1 for
values.) This model error is then applied to all ensemble
members.

[33] The model error estimates o,,; can also be interpreted
as measures of model quality; they can be used for different
models and are suitable for model intercomparisons. For
example, for temperature and salinity, the values in the
second row of Table 1 (3-D data and o, = 0) correspond to
the global RMS error. They can be compared to those
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Table 1. Estimated Model Error o, for Different Assumptions and Tracers as Calculated From the Ky, = 0.15 Case®

Al*C CFC11 PO, AOU DIC ALK P*
T (K) N (per mil) (M) (EM) (mM) (uM) (M) (M)
3-D o0#0 0.90 0.18 0.0 0.24 0.20 25 19 13 0.16
00=0 0.92 0.19 20 0.35 0.20 25 25 15 0.16
1-D 5o=0 0.24 0.079 5.9 0.053 0.064 3.7 9.0 6.6 0.062

#AOU, apparent oxygen utilization; DIC, dissolved inorganic carbon; ALK, alkalinity.

reported for the OCMIP models [Doney et al., 2004, Table 2]
and a subset of the Intergovernmental Panel on Climate
Change Fourth Assessment Report (IPCC AR4) models
[Schmittner et al., 2005a]. The OCMIP range for 3-D
models without internal restoring is 0.84-2.18 K for
temperature and 0.15-0.31 for salinity; for the IPCC AR4
fully coupled ocean atmosphere models it is 0.86—-2.97 K
for temperature and 0.20—0.38 for salinity.

[34] We use the observational errors reviewed in section 2.3
for the 3-D method. For the 1-D method we assume that the
observation error is negligible compared with the model
error, since the global averaging leads to very small obser-
vational errors (decreasing with ~N_;"%, where N, is the
effective number of observations). This is consistent with
the 1-D data-model residuals, which show a smoothly
varying structure more indicative of systematic model error
than random observation noise.

[35] With these error estimates, we evaluate the skill of
each of the eight models in the ensemble using three
metrics. We use the root mean squared (RMS) error intro-
duced in section 2.4.1, as well as the bias-corrected RMS
error. We also compute the correlation between the observa-
tions and each model. A higher correlation indicates greater
similarity between the model and the observations. We
conduct sensitivity studies to explore how model skill varies
with K, as determined by each of the three skill measures.

[36] In the following discussion we distinguish between
tracers which are influenced by physical processes only
such as 7. S, A™C, and CFC11, and those tracers strongly
affected by biological processes such as PO,, AOU, P*,
DIC, and ALK, since the latter also depend on the choice of
uncertain biological model parameters. Biological effects on
the radiocarbon distribution in the ocean are about 2 orders
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Figure 4. Normalized RMS errors (left) £ and (center) £’ and (right) correlation coefficients r for 3-D
distributions of different (top) physical and (bottom) biogeochemical tracers as a function of the

diapycnal background diffusivity K.
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probability density

probability density

Figure 5. Posterior PDFs using the 3-D method
(equation (3)) for different (top) physical and (bottom)
biogeochemical tracers as a function of the diapycnal
background diffusivity K,

of magnitude smaller than the physical effects of decay and
air-sea gas exchange.

[37] The RMS and bias-corrected RMS errors, E and E,
are plotted in Figure 4 together with the correlation coef-
ficients r; = M;0;/+/var(M;) - var(O;), with the variance
var(x) = x2 — X2, using the full three-dimensional data. The
different tracers show different sensitivities to K;, depend-
ing on the global metric considered. When measured by the
RMS error E, the model skill for the A14C, AOU, P* and
DIC tracers show the largest sensitivity to changes in K.
Much of this sensitivity, however, is due to the model bias,
as revealed by the difference between E and the bias-
corrected error E'. For S, ALK and PO, the bias is zero
(E = E) because neither of these tracers exchanges with
other climate system components in the model and hence
their ocean inventories are fixed. When measured by the
correlation coefficient, the model skill for the AOU and §
tracers are most sensitive to variations in Kp,.

[38] Most tracers are in better agreement with the obser-
vations for small values of K}, both for £ and r as metrics.
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Correlation coefficients between model output and obser-
vations peak between 0.05 and 0.15 for all tracers except
DIC and 7, which are rather insensitive. AOU, DIC, A
and P* show very large biases for large values of Kj,. The
deep ocean is much too young (A'"C too high), too
vigorously ventilated (AOU too low), too poor in inorganic
carbon and too high in preformed nutrients. Even if the bias
is removed, the bias-corrected RMS error £’ in AOU is still
much larger for the high-K,, models. CFC11 and S are both
moderately sensitive and show better agreement with the
observations for low K,, irrespective of the metric consid-
ered. PO4 and ALK are also moderately sensitive and show
minima in RMS errors and maxima in correlation around
Kpe = 0.15.

3.3.2. Probabilities From the 3-D Method

[39] PDFs from the 3-D method suggest that A'*C is the
most sensitive of the physical variables to changes in K,,
followed by CFC11, T and S (Figure 5). A™C, S, and
CFC11 show the maximum probability for small values of
Kpg. For A™C the probability for small K, is about three
times as high as that for high K,,. T shows a broad
maximum for 0.2 < K;, < 0.4 and smallest probabilities
for very high and very low values of K, The biological
tracers (Figure 5, bottom) are all sensitive to variations in
K, in particular AOU, DIC, and P* which are 5-10 times
more likely for low than high K,,. ALK and PO, show
maxima for K, around 0.15-0.2.

3.3.3. Probabilities From the 1-D Method

[40] Figure 6 shows PDFs for the same variables but
using the 1-D method. The most obvious difference is that
the 1-D PDFs are much sharper than those obtained with the
3-D method. This might be counterintuitive, since informa-
tion was lost by aggregating the data from 3-D to 1-D (we
discuss this effect further in section 3.3.4). The 1-D method
yields maxima for all tracers for K;, < 0.2. Probabilities for
Kpe > 0.4 are very small for all tracers. Thus the two
statistical methods agree that high-K;, models are less
consistent with the observations than low-K, models. Both
methods also exhibit similar shapes for most tracers. For
example, AMC, S, AOU, DIC, and P* all have maxima for
K3, < 0.2, CFC11, ALK and PO4 show maxima for 0.1 <
Ko < 0.2, and T shows a broad maximum for 0.2 < Kj, <
0.3.

3.3.4. Sensitivity Tests

[41] We conduct four simple sensitivity analyses of the
3-D method to gain some insights into the factors that
influence the differences in the posterior PDFs between
the 3-D and 1-D methods (Figure 7). First, we test the
assumption of neglecting the error of the observations by
setting 0 = 0 and reestimating the total error o (Table 1).
Comparing the resulting PDFs (blue lines) with the original
PDFs (black lines) shows that this effect is negligible for
most tracers. Only CFC11, A'C, and DIC show small
differences.

[42] Second, we calculated the PDFs for 1-D (horizontally
averaged) data but using the 3-D method as described in
section 2.4.1 (red solid lines in Figure 7). The reestimated
errors (Table 1) are much smaller than in the 3-D case for all
tracers, indicating that the model has considerably more
skill in reproducing the horizontally averaged observations
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[43] Third, we evaluate the effects of correcting for spatial
autocorrelation. Following Ricciuto et al. [2008] we remove
the lag-1 autocorrelation (a) from the 1-D residuals, R,
according to:

E? = (Ri(zx) — aRi(z1-1))*. ©)

As expected from earlier studies [Ricciuto et al., 2008;
Zellner and Tiao, 1964] this approach to account for the
autocorrelation (green lines in Figure 7) leads to broader
PDFs (compared to the red solid lines). Neglecting spatial
autocorrelation typically results in overconfident parameter
estimates. The fact that the PDFs are quite different
emphasizes the importance of properly considering spatial
autocorrelation.

[44] Fourth, the PDFs are recalculated for the 1-D data
(without subtracting autocorrelation) but using the error
estimate from the 3-D method with 0o = 0 (red dashed
lines in Figure 7). Thus the difference between the red solid
lines and the red dashed lines in Figure 7 isolates the effect
of different estimated o. The difference between the red
dashed lines and the blue lines isolates the effect of the
reduced information content in the 1-D versus the 3-D
residuals. For most tracers the PDFs are broader than those
in the high-o cases (red solid lines) and more similar to the
3-D case (blue lines). This indicates that the most important
reason for the difference between the 1-D and 3-D methods
(and the explanation for the sharper PDFs in the 1-D
method) is the differently estimated o. It also suggests that
spatial aggregation, despite a loss of information, can help
to improve the model skill, and as a consequence lead to
sharper PDFs. For PO,, CFC11, and ALK the red dashed
lines deviate substantially from the blue solid lines. This
indicates an important loss of information due to the
averaging. These tracers might not be suitable for the 1-D
method.

3.3.5. Probabilities for Multiple Tracers

[45] Each of the tracers examined above contains different
information and leads to a different PDF for K;,. Our goal,
however, is to produce a single PDF combining the infor-
mation from all tracers as outlined in section 2.4.1.

[46] The distribution of each tracer is influenced not only

probability density

probability density

Figure 6. Posterior PDFs using the 1-D method
(equation (7)) for different (top) physical and (bottom)
biogeochemical tracers as a function of the diapycnal
background diffusivity K,.

than the full 3-D distributions. Intuitively it makes sense
that because of the limited resolution a model’s skill
improves with increasing spatial scale. Comparison of the
solid black and solid red lines in Figure 7 shows that smaller by diapycnal mixing and the large-scale ocean circulation
o results in sharper PDFs, which for most tracers are now 1 215 by other processes. Some tracers, such as 7 S’
similar to the PDFs from the 1-D method (Figure 6). This  ~pc11. A™C. and DIC. are also influenced by air-sca
suggests that the main reason for the sharper PDFs in the exchan;;e. Thus. the model errors. and hence the PDF. for
1-D method (Figure 6) compared with the 3-D method 7 ¢ o " i be influenced by’model biases in ocean-

(Figure 5) is the smaller estimated o. atmosphere heat fluxes, which are controlled by radiative

Figure 7. Sensitivity tests. Posterior PDFs as a function of the diapycnal background diffusivity K, for different tracers
using the 3-D method, but different assumptions in the statistical analysis. Black lines show the full 3-D method and are
identical to the PDFs shown in Figure 5. Blue lines neglect the error in the observations (oo = 0). Note that for many tracers
the black lines are indistinguishable from and covered by the blue lines. Solid red lines use the 3-D method as described in
section 2.4.1 but use horizontally averaged 1-D data. Note that the error estimate (o) is strongly reduced (see also Table 1)
and that the PDFs are much sharper compared to the unaveraged 3-D data (black lines). Red dashed lines also use the 3-D
method and horizontally averaged 1-D data, but instead of estimating the error (as done for the solid red lines) the error
estimate from the 3-D data (black lines) is used. Thus the difference between the red solid and red dashed lines is only due
to different 0. Green lines compared to the red solid lines illustrate the broadening effect on the PDFs from removing the
spatial autocorrelation using equation (9).
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fluxes as well as sensible and latent heat fluxes. The PDF
for S, on the other hand, is influenced by surface ocean
water fluxes, which are determined by evaporation, precip-
itation and river runoff, and thus by the atmospheric
hydrological cycle. Because different physical processes
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control heat and water fluxes (except for evaporation which
influences both) it is unlikely that model errors in heat
fluxes are strongly correlated with errors in water fluxes.
Similarly, the air-sea fluxes of carbon, radiocarbon and
CFCs are presumably rather independent from heat and
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Table 2. Cross-Tracer Error Correlation for the 3-D Method in the
Model With K, = 0.15 cm?/s®

T S AC CFCl1l PO, AOU DIC ALK
T
S 0.48
A*C 026  0.03
CFCIl  0.01 —0.04 0.39
PO, —042 —-022 —041 —023
AOU  —0.09 0.12 —0.36 —0.40 0.65
DIC —020 031 033 —0.13 052 0.76
ALK 0.04 054 023 —0.07 0.12 042 0.72
p* —044 —042 —0.19 008 0.69 —0.08 —005 —0.23

?Absolute values larger than 0.3 are shown in bold.

water fluxes. Thus, considering multiple tracers can possi-
bly average out model errors in individual air-sea fluxes. If
the errors in the tracer residuals are independent between
tracers, a combined likelihood for all tracers can be calcu-
lated by multiplying the likelihoods of the individual tracers
as described at the end of section 2.4.1.

[47] On the other hand, if tracers are not independent,
multiplication of the likelihoods would lead to overconfi-
dent and possibly biased PDFs. Sinking of particulate
organic matter (the soft-tissue biological pump), for in-
stance, influences PO4, AOU, and DIC and thus errors in
those tracers cannot be expected to be independent. An
objective way to determine independence between different
tracers is to examine correlations between the errors of the
residuals. As shown in Table 2, the different tracers are
generally not independent. PO,4, AOU, and DIC are clearly
related for the reasons mentioned above, but other tracer
residuals (such as 7 and S) are also correlated, for less
obvious reasons.

[48] At this point no method that we are aware of has
accounted for the cross-tracer correlation. It is highly
desirable to develop such a method in the future. For the
time being we calculate PDFs for different combinations of
uncorrelated tracers (Figure 8). All combined PDFs show
low probability for models with high mixing rates (K, >
0.3). The different tracer combinations do not agree well for
the probability of low-mixing models. Some show a distinct
maximum around 0.1-0.2 and considerably lower proba-
bilities for lower K34, Whereas others show high probabil-
ities for the lowest diffusivities. We conclude that the
observations put a firm upper limit on the diffusivities,
whereas no unequivocal lower limit can be determined on
the basis of the information we have presented here.

4. Discussion

[49] One issue that has not been addressed here is
parameter interactions. Generally model tracer distributions
are influenced by more than one parameter, each of which is
uncertain. Thus, the results obtained by varying one param-
eter depend on the values of many other parameters. This is
also true in our case, and hence the probabilities for
different K, presented here are tentative and should be
regarded as a test of the methodology rather than a
definitive result.
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[s0] Parameter interactions might be most obvious for
tracers affected by biological processes such as PO, AOU,
P*, DIC and ALK, which are sensitive to ill-constrained
biological model parameters. Surface nutrient concentra-
tions and deep ocean AOU, P* and DIC, for instance, all
depend strongly on the maximum growth rate of phyto-
plankton () which determines the efficiency of the biolog-
ical pump. The vertical alkalinity gradient is controlled by
the fixed ratio of calcium carbonate versus particulate
organic carbon production (Rcacospoc). These biological
model parameters were tuned for a model version with K, =
0.15(y=10.13 d™', Rcacospoc = 0.03). Thus larger errors
for those tracers in models with different K, can be
expected because the biological parameters are unadjusted.
Interestingly, though, 3 out of 5 biological tracers prefer
Kpe = 0.05. Models with K > 0.15 therefore overestimate
surface nutrient concentrations because of more intense
advective and diffusive transport of nutrient rich deep
waters to the surface. Similarly, models with K, > 0.15
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Figure 8. Posterior PDFs as a function of the diapycnal
background diffusivity K, for different combinations of
uncorrelated (see Table 2) tracer distributions using the 3-D
method. Compared with the PDFs of the individual tracers
as shown in Figure 5, the combined PDFs are much sharper,
illustrating the power of using multiple tracers to constrain
model parameters.
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underestimate the efficiency of the biological pump and
hence the deep ocean AOU and DIC, and overestimate P*.
Thus ~ should be increased together with K. Faster rates
of nutrient input into the euphotic zone, in the strong mixing
models, also lead to increased primary and export produc-
tion [Schmittner et al., 2005b] and higher production of
CaCQg;, resulting in overestimated vertical alkalinity gra-
dients. Thus, Rcacospoc should be decreased as K, is
increased.

[51] Because of computational constraints we are currently
not able to retune the biological parameters for each model
version with different K;,. A simple optimization of
biological parameters for the model version with K, =
0.5 (y=0.2 d™', Reacospoc = 0. 02) results in a decrease
of the errors w1th respect to the untuned values shown in
Figure 3, but the errors are still significantly larger than
those of the low-K;, models. Thus, the true likelihoods for
the biological tracers would presumably increase for model
versions with high K. It is highly desirable to include these
known cross-parameter dependencies in a larger model
ensemble in the future. Of course, tracer distributions not
affected by biological parameters, such as A'*C (radiocar-
bon in our model is not influenced by biological parameters)
and CFCs, do not suffer from this complication. Therefore
our conclusion that models with K, > 0.3 cm %/s are
increasingly inconsistent with observations holds true on
the basis of these tracers alone.

[52] An intriguing result is that horizontally averaged data
(1-D method) lead to sharper PDFs than the full 3-D data
distribution. We have shown that this is likely due to the
improved skill of the model in simulating horizontally
averaged observations (smaller o). This seems to be an
advantage of the 1-D method. However, horizontal averag-
ing has the obvious disadvantage that major model prob-
lems in the horizontal tracer distribution are undetectable.
Consider, for example, a model with deep water formation
in the North Pacific instead of the North Atlantic. Such a
model might still reproduce the horizontally averaged tracer
distributions reasonably well, despite the fact that it is
obviously wrong. Nevertheless, our results suggest that an
optimal degree of spatial aggregation might exist, at which
high model skill and the resulting sharp PDFs could be
combined with 3-D spatial information.

[53] Griffies et al. [2000] showed that z-level models,
such as the one used here, can exhibit spurious diapycnal
mixing due to numerical errors. For a model with the same
numerical scheme as that used here (the second-order
accurate, flux-corrected transport scheme, FCT) and a
resolution of 2.4° x 2. 4° they found large spurious mixing
on the order of 0.3 cm?/s, whereas for a model with 1.2° x
1.2° the spurious mixing was negligible because of the
improved resolution of the western boundary currents. Our
zonal grid resolution (which is more important than the
meridional resolution for simulating western boundary
currents) of 3.6°. Thus, we cannot exclude the possibility
that our model exhibits spurious mixing, particularly for the
low-K}, cases. However, we can exclude the possibility that
the model is dominated by numerical diffusion, because in
this case changing the explicit diffusivity would not alter the
solution. By contrast, in our experiments, the circulation is
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significantly different between all runs, including those with
low diffusivity. The maximum overturning at 25°N in the
Atlantic in the unperturbed preindustrial model spinup, for
example, is 10.8 Sv, for K, = 0.01, 12.2 Sv in the K, =
0.05 case, and 13.8 Sv for K, = 0.1.

[54] An outstanding question remains as to how to inter-
pret the range spanned by the C*MIP model results. This
question can be addressed only by a systematic and prob-
abilistic comparison with observations that sample the
relevant parametric and structural uncertainties. Our study
represents a step toward this goal, though here we have
sampled only a small fraction of the full range of parametric
uncertainty. We have shown that low values of K, are most
consistent with ocean tracer observations, and that most of
the C*MIP models fall within the range of ocean carbon
uptake simulated by varying K, values in thls study. If the
values for K, were known for the different C*MIP models, it
would be possible to reject projections from models with
high K, values, or to judge them as less reliable than those
from models with low K,. However, we are not aware of a
published documentation of the values of K, used by the
C*MIP models (effective diapycnal diffusivity can also
contain a difficult-to-evaluate numerical component). There
is an additional complication arising from drfferent struc-
tural types of ocean models represented in C*MIP (box
models, versus 2-D models, versus GCMs). In practice,
therefore, it remains difficult to assign the likelihoods we
have derived here directly to the C*MIP model projections.
However, we think that the methodology developed here
can be used for multimodel assessments in the future, given
that spatially resolved tracer model data output is provided.

5. Conclusions

[55s] We have shown that uncertainties in the value of
diapycnal mixing in the pelagic ocean contribute to the
spread in future model projections of CO, and climate in
response to anthropogenic carbon emissions. Models with
low mixing lead to slower uptake of carbon and heat by the
ocean, therefore contributing to higher atmospheric CO,
and warmer air temperatures. These results suggest that
models with large ocean vertical mixing (high K,) system-
atically underestimate future warming and CO, concentra-
tions, and that the range in vertical mixing between models
is a contributing factor to the large ranges in transient
climate sensitivity and climate—carbon cycle feedbacks that
have been diagnosed in earlier model intercomparisons.

[s6] Globally averaged metrics such as historic changes in
globally averaged surface air temperature or ocean heat
content do not provide strong constraints on the vertical
diffusivity [Tomassini et al., 2007]. We show that spatially
resolved physical, geochemical and biogeochemical tracer
observations in the ocean can be used to reduce the
uncertainty of this parameter (and, by extension, that of
future climate projections). These observations provide a
firm upper limit on the value of K., whereas the lower limit
is less well constrained. Our best estimate for the back-
ground diapycnal diffusivity in the pelagic ocean is 0.05—
0.2 cm?/s, in agreement with independent estimates based
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on dye dispersion experiments and microstructure turbulence
measurements [Ledwell et al., 1993; Toole et al., 1994].

[57] We have developed a Bayesian model-data fusion
method that can be used to quantify and reduce the
uncertainty in future climate—carbon cycle projections.
Remaining issues left for future work include (1) cross-
tracer correlations, (2) parameter interactions, and (3) the
optimal degree of spatial aggregation. Resolution of the
second issue is simply one of computational resources,
while the first needs further development and refinement
of the existing statistical methodology and theory. To
resolve the third issue, the optimal degree of aggregation
can presumably be determined in a sensitivity study with
successively larger spatial scales of averaging. None of
those issues seem insurmountable. The prospect of robust
likelihood-based model assessment, using multiple obser-
vations considering spatial and temporal autocorrelation as
well as cross-tracer correlations has the potential to lead
toward truly probabilistic climate—carbon cycle projections.
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